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preface
I first got into programming as a hobby. Visual Basic 6 for Dummies 
taught me the basics, and I kept reading books to learn more. But the 
subject of algorithms was impenetrable for me. I remember savoring 
the table of contents of my first algorithms book, thinking “I’m finally 
going to understand these topics!” But it was dense stuff, and I gave 
up after a few weeks. It wasn’t until I had my first good algorithms 
professor that I realized how simple and elegant these ideas were.
A few years ago, I wrote my first illustrated blog post. I’m a visual 
learner, and I really liked the illustrated style. Since then, I’ve written 
a few illustrated posts on functional programming, Git, machine 
learning, and concurrency. By the way: I was a mediocre writer when 
I started out. Explaining technical concepts is hard. Coming up with 
good examples takes time, and explaining a difficult concept takes time. 
So it’s easiest to gloss over the hard stuff. I thought I was doing a pretty 
good job, until after one of my posts got popular, a coworker came up 
to me and said, “I read your post and I still don’t understand this.” I still 
had a lot to learn about writing.
Somewhere in the middle of writing these blog posts, Manning reached 
out to me and asked if I wanted to write an illustrated book. Well, it 
turns out that Manning editors know a lot about explaining technical 
concepts, and they taught me how to teach. I wrote this book to scratch 
a particular itch: I wanted to write a book that explained hard technical 
topics well, and I wanted an easy-to-read algorithms book. My writing 
has come a long way since that first blog post, and I  hope you find this 
book an easy and informative read.
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about this book
This book is designed to be easy to follow. I avoid big leaps of thought. 
Any time a new concept is introduced, I explain it right away or tell 
you when I’ll explain it. Core concepts are reinforced with exercises 
and multiple explanations so that you can check your assumptions and 
make sure you’re following along.
I lead with examples. Instead of writing symbol soup, my goal is to 
make it easy for you to visualize these concepts. I also think we learn 
best by being able to recall something we already know, and examples 
make recall easier. So when you’re trying to remember the difference 
between arrays and linked lists (explained in chapter 2), you can just 
think about getting seated for a movie. Also, at the risk of stating the 
obvious, I’m a visual learner. This book is chock-full of images.
The contents of the book are carefully curated. There’s no need to 
write a book that covers every sorting algorithm—that’s why we have 
Wikipedia and Khan Academy. All the algorithms I’ve included are 
practical. I’ve found them useful in my job as a software engineer,  
and they provide a good foundation for more complex topics.  
Happy reading!

Roadmap
The first three chapters of this book lay the foundations: 

• Chapter 1—You’ll learn your first practical algorithm: binary search. 
You also learn to analyze the speed of an algorithm using Big O 
notation. Big O notation is used throughout the book to analyze how 
slow or fast an algorithm is.
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• Chapter 2—You’ll learn about two fundamental data structures: 
arrays and linked lists. These data structures are used throughout the 
book, and they’re used to make more advanced data structures like 
hash tables (chapter 5). 

• Chapter 3—You’ll learn about recursion, a handy technique used by 
many algorithms (such as quicksort, covered in chapter 4). 

In my experience, Big O notation and recursion are challenging topics 
for beginners. So I’ve slowed down and spent extra time on these 
sections.
The rest of the book presents algorithms with broad applications:

• Problem-solving techniques—Covered in chapters 4, 8, and 9. If you 
come across a problem and aren’t sure how to solve it efficiently, try 
divide and conquer (chapter 4) or dynamic programming (chapter 
9). Or you may realize there’s no efficient solution, and get an 
approximate answer using a greedy algorithm instead (chapter 8).

• Hash tables—Covered in chapter 5. A hash table is a very useful data 
structure. It contains sets of key and value pairs, like a person’s name 
and their email address, or a username and the associated password. 
It’s hard to overstate hash tables’ usefulness. When I want to solve 
a problem, the two plans of attack I start with are “Can I use a hash 
table?” and “Can I model this as a graph?”

• Graph algorithms—Covered in chapters 6 and 7. Graphs are a way to 
model a network: a social network, or a network of roads, or neurons, 
or any other set of connections. Breadth-first search (chapter 6) and 
Dijkstra’s algorithm (chapter 7) are ways to find the shortest distance 
between two points in a network: you can use this approach to 
calculate the degrees of separation between two people or the shortest 
route to a destination.

• K-nearest neighbors (KNN)—Covered in chapter 10. This is a 
simple machine-learning algorithm. You can use KNN to build a 
recommendations system, an OCR engine, a system to predict stock 
values—anything that involves predicting a value (“We think Adit will 
rate this movie 4 stars”) or classifying an object (“That letter is a Q”).

• Next steps—Chapter 11 goes over 10 algorithms that would make 
good further reading.
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How to use this book
The order and contents of this book have been carefully designed. If 
you’re interested in a topic, feel free to jump ahead. Otherwise, read the 
chapters in order—they build on each other.
I strongly recommend executing the code for the examples yourself. I 
can’t stress this part enough. Just type out my code samples verbatim 
(or download them from www.manning.com/books/grokking-
algorithms or https://github.com/egonschiele/grokking_algorithms), 
and execute them. You’ll retain a lot more if you do.
I also recommend doing the exercises in this book. The exercises are 
short—usually just a minute or two, sometimes 5 to 10 minutes. They 
will help you check your thinking, so you’ll know when you’re off track 
before you’ve gone too far.

Who should read this book
This book is aimed at anyone who knows the basics of coding and 
wants to understand algorithms. Maybe you already have a coding 
problem and are trying to find an algorithmic solution. Or maybe 
you want to understand what algorithms are useful for. Here’s a short, 
incomplete list of people who will probably find this book useful:

• Hobbyist coders

• Coding boot camp students

• Computer science grads looking for a refresher

• Physics/math/other grads who are interested in programming

Code conventions and downloads
All the code examples in this book use Python 2.7. All code in the 
book is presented in a fixed-width font like this to separate it 
from ordinary text. Code annotations accompany some of the listings, 
highlighting important concepts.
You can download the code for the examples in the book from the 
publisher’s website at www.manning.com/books/grokking-algorithms 
or from https://github.com/egonschiele/grokking_algorithms. 
I believe you learn best when you really enjoy learning—so have fun, 
and run the code samples!

about this book

www.manning.com/books/grokking-algorithms
www.manning.com/books/grokking-algorithms
https://github.com/egonschiele/grokking_algorithms
www.manning.com/books/grokking-algorithms
https://github.com/egonschiele/grokking_algorithms
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In this chapter

• You get a foundation for the rest of the book.

• You write your first search algorithm (binary 
search).

• You learn how to talk about the running time  
of an algorithm (Big O notation).

• You’re introduced to a common technique for  
designing algorithms (recursion).

introduction 
to algorithms

Introduction
An algorithm is a set of instructions for accomplishing a task. Every 
piece of code could be called an algorithm, but this book covers the 
more interesting bits. I chose the algorithms in this book for inclusion 
because they’re fast, or they solve interesting problems, or both. Here 
are some highlights:

• Chapter 1 talks about binary search and shows how an algorithm can 
speed up your code. In one example, the number of steps needed goes 
from 4 billion down to 32!
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• A GPS device uses graph algorithms (as you’ll learn in chapters 6, 7, 
and 8) to calculate the shortest route to your destination.

• You can use dynamic programming (discussed in chapter 9) to write 
an AI algorithm that plays checkers.

In each case, I’ll describe the algorithm and give you an example. Then 
I’ll talk about the running time of the algorithm in Big O notation. 
Finally, I’ll explore what other types of problems could be solved by the 
same algorithm.

What you’ll learn about performance
The good news is, an implementation of every algorithm in this book is 
probably available in your favorite language, so you don’t have to write 
each algorithm yourself! But those implementations are useless if you 
don’t understand the trade-offs. In this book, you’ll learn to compare 
trade-offs between different algorithms: Should you use merge sort or 
quicksort? Should you use an array or a list? Just using a different data 
structure can make a big difference.

What you’ll learn about solving problems
You’ll learn techniques for solving problems that might have been out of 
your grasp until now. For example:

• If you like making video games, you can write an AI system that 
follows the user around using graph algorithms.

• You’ll learn to make a recommendations system using k-nearest 
neighbors.

• Some problems aren’t solvable in a timely manner! The part of this 
book that talks about NP-complete problems shows you how to 
identify those problems and come up with an algorithm that gives 
you an approximate answer.

More generally, by the end of this book, you’ll know some of the most 
widely applicable algorithms. You can then use your new knowledge to 
learn about more specific algorithms for AI, databases, and so on. Or 
you can take on bigger challenges at work.
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Binary search
Suppose you’re searching for a person in the phone book (what an old-
fashioned sentence!). Their name starts with K. You could start at the 
beginning and keep flipping pages until you get to the Ks. But you’re 
more likely to start at a page in the middle, because you know the Ks 
are going to be near the middle of the phone book.
Or suppose you’re searching for a word in a dictionary, and it  
starts with O. Again, you’ll start near the middle. 
Now suppose you log on to Facebook. When you do, Facebook 
has to verify that you have an account on the site. So, it needs to 
search for your username in its database. Suppose your username is 
karlmageddon. Facebook could start from the As and search for your 
name—but it makes more sense for it to begin somewhere in the 
middle.
This is a search problem. And all these cases use the same algorithm  
to solve the problem: binary search.
Binary search is an algorithm; its input is a sorted list of elements  
(I’ll explain later why it needs to be sorted). If an element you’re  
looking for is in that list, binary search returns the position  
where it’s located. Otherwise, binary search returns null.

What you need to know
You’ll need to know basic algebra before starting this book. In parti- 
cular, take this function: f(x) = x × 2. What is f(5)? If you answered 10, 
you’re set.

Additionally, this chapter (and this book) will be easier to follow if 
you’re familiar with one programming language. All the examples in 
this book are in Python. If you don’t know any programming languages 
and want to learn one, choose Python—it’s great for beginners. If you 
know another language, like Ruby, you’ll be fine.
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For example:

Here’s an example of how binary search works. I’m thinking of a 
number between 1 and 100. 

You have to try to guess my number in the fewest tries possible. With 
every guess, I’ll tell you if your guess is too low, too high, or correct.
Suppose you start guessing like this: 1, 2, 3, 4 …. Here’s how it would 
go.

Looking for companies 
in a phone book with 
binary search
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This is simple search (maybe stupid search would be a better term). With 
each guess, you’re eliminating only one number. If my number was 99, 
it could take you 99 guesses to get there!

A better way to search
Here’s a better technique. Start with 50.

Too low, but you just eliminated half the numbers! Now you know that 
1–50 are all too low. Next guess: 75. 

A bad approach to 
number guessing
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Too high, but again you cut down half the remaining numbers! With 
binary search, you guess the middle number and eliminate half the 
remaining numbers every time. Next is 63 (halfway between 50 and 75).

This is binary search. You just learned your first algorithm! Here’s how 
many numbers you can eliminate every time.

Whatever number I’m thinking of, you can guess in a maximum of 
seven guesses—because you eliminate so many numbers with every 
guess!
Suppose you’re looking for a word in the dictionary. The dictionary has 
240,000 words. In the worst case, how many steps do you think each 
search will take?

Simple search could take 240,000 steps if the word you’re looking for is 
the very last one in the book. With each step of binary search, you cut 
the number of words in half until you’re left with only one word.

Eliminate half the  
numbers every time 
with binary search.
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Logarithms
You may not remember what logarithms are, but you probably know what 
exponentials are. log10 100 is like asking, “How many 10s do we multiply 
together to get 100?” The answer is 2: 10 × 10. So log10 100 = 2. Logs are the 
flip of exponentials.

Logs are the flip of exponentials.

In this book, when I talk about running time in Big O notation (explained 
a little later), log always means log2. When you search for an element using 
simple search, in the worst case you might have to look at every single 
element. So for a list of 8 numbers, you’d have to check 8 numbers at most. 
For binary search, you have to check log n elements in the worst case. For 
a list of 8 elements, log 8 == 3, because 23 == 8. So for a list of 8 numbers, 
you would have to check 3 numbers at most. For a list of 1,024 elements, 
log 1,024 = 10, because 210 == 1,024. So for a list of 1,024 numbers, you’d 
have to check 10 numbers at most.

Note

I’ll talk about log time a lot in this book, so you should understand the con-
cept of logarithms. If you don’t, Khan Academy (khanacademy.org) has a 
nice video that makes it clear.

So binary search will take 18 steps—a big difference! In general, for any 
list of n, binary search will take log2 n steps to run in the worst case, 
whereas simple search will take n steps.
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Note

Binary search only works when your list is in sorted order. For example,  
the names in a phone book are sorted in alphabetical order, so you can  
use binary search to look for a name. What would happen if the names 
weren’t sorted?

Let’s see how to write binary search in Python. The code sample here 
uses arrays. If you don’t know how arrays work, don’t worry; they’re 
covered in the next chapter. You just need to know that you can store 
a sequence of elements in a row of consecutive buckets called an array. 
The buckets are numbered starting with 0: the first bucket is at position 
#0, the second is #1, the third is #2, and so on.
The binary_search function takes a sorted array and an item. If the 
item is in the array, the function returns its position. You’ll keep track 
of what part of the array you have to search through. At the beginning, 
this is the entire array:

low = 0
high = len(list) - 1

Each time, you check the middle element:

mid = (low + high) / 2        
guess = list[mid]

If the guess is too low, you update low accordingly:

if guess < item:
  low = mid + 1

mid is rounded down by Python 
automatically if (low + high) isn’t  
an even number. 
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And if the guess is too high, you update high. Here’s the full code:

def binary_search(list, item):
  low = 0  
  high = len(list)—1        

  while low <= high: 
    mid = (low + high)
    guess = list[mid]
    if guess == item:
      return mid
    if guess > item:     
      high = mid - 1
    else:    
      low = mid + 1
  return None  

my_list = [1, 3, 5, 7, 9] 

print binary_search(my_list, 3) # => 1
print binary_search(my_list, -1) # => None

EXERCISES

1.1   Suppose you have a sorted list of 128 names, and you’re searching 
through it using binary search. What’s the maximum number of 
steps it would take?

1.2   Suppose you double the size of the list. What’s the maximum 
number of steps now?

Binary search

low and high keep track of which  
part of the list you’ll search in.

While you haven’t narrowed it down  
to one element …

… check the middle element.

Found the item.

The guess was too high.

The guess was too low.

The item doesn’t exist.

Let’s test it!

Remember, lists start at 0.  
The second slot has index 1.

“None” means nil in Python. It 
indicates that the item wasn’t found.
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Running time
Any time I talk about an algorithm, I’ll discuss its running time. 
Generally you want to choose the most efficient algorithm—
whether you’re trying to optimize for time or space.
Back to binary search. How much time do you save by using 
it? Well, the first approach was to check each number, one by 
one. If this is a list of 100 numbers, it takes up to 100 guesses. 
If it’s a list of 4 billion numbers, it takes up to 4 billion guesses. So the 
maximum number of guesses is the same as the size of the list. This is 
called linear time.
Binary search is different. If the list is 100 items long, it takes at most 
7 guesses. If the list is 4 billion items, it takes at most 32 guesses. 
Powerful, eh? Binary search runs in logarithmic time (or log time, as 
the natives call it).  Here’s a table summarizing our findings today.

Big O notation
Big O notation is special notation that tells you how fast an algorithm is. 
Who cares? Well, it turns out that you’ll use other people’s algorithms 
often—and when you do, it’s nice to understand how fast or slow they 
are. In this section, I’ll explain what Big O notation is and give you a list 
of the most common running times for algorithms using it.

Run times for  
search algorithms



11Big O notation

Running time for 
simple search vs. 
binary search,  
with a list of 100 
elements

Algorithm running times grow at different rates
Bob is writing a search algorithm for NASA. His algorithm will kick in 
when a rocket is about to land on the Moon, and it will help calculate 
where to land.
This is an example of how the run time of two algorithms can grow 
at different rates. Bob is trying to decide between simple search and 
binary search. The algorithm needs to be both fast and correct. On one 
hand, binary search is faster. And Bob has only 10 seconds to figure out 
where to land—otherwise, the rocket will be off course. On the other 
hand, simple search is easier to write, and there is less chance of bugs 
being introduced. And Bob really doesn’t want bugs in the code to land 
a rocket! To be extra careful, Bob decides to time both algorithms with 
a list of 100 elements.
Let’s assume it takes 1 millisecond to check one element. With simple 
search, Bob has to check 100 elements, so the search takes 100 ms to 
run. On the other hand, he only has to check 7 elements with binary 
search (log2 100 is roughly 7), so that search takes 7 ms to run. But 
realistically, the list will have more like a billion elements. If it does, 
how long will simple search take? How long will binary search take? 
Make sure you have an answer for each question before reading on.

Bob runs binary search with 1 billion elements, and it takes 30 ms 
(log2 1,000,000,000 is roughly 30). “32 ms!” he thinks. “Binary search 
is about 15 times faster than simple search, because simple search took 
100 ms with 100 elements, and binary search took 7 ms. So simple 
search will take 30 × 15 = 450 ms, right? Way under my threshold of  
10 seconds.” Bob decides to go with simple search. Is that the right 
choice?
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No. Turns out, Bob is wrong. Dead wrong. The run time for simple 
search with 1 billion items will be 1 billion ms, which is 11 days! The 
problem is, the run times for binary search and simple search don’t 
grow at the same rate.

That is, as the number of items increases, binary search takes a little 
more time to run. But simple search takes a lot more time to run. So 
as the list of numbers gets bigger, binary search suddenly becomes a 
lot faster than simple search. Bob thought binary search was 15 times 
faster than simple search, but that’s not correct. If the list has 1 billion 
items, it’s more like 33 million times faster. That’s why it’s not enough 
to know how long an algorithm takes to run—you need to know how 
the running time increases as the list size increases. That’s where Big O 
notation comes in.
Big O notation tells you how fast an algorithm is. For example, suppose 
you have a list of size n. Simple search needs to check each element, so 
it will take n operations. The run time in Big O notation is O(n). Where 
are the seconds? There are none—Big O doesn’t tell you the speed in 
seconds. Big O notation lets you compare the number of operations. It 
tells you how fast the algorithm grows.

Run times grow at  
very different speeds!
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Here’s another example. Binary search needs log n operations to check 
a list of size n. What’s the running time in Big O notation? It’s O(log n). 
In general, Big O notation is written as follows.

This tells you the number of operations an algorithm will make. It’s 
called Big O notation because you put a “big O” in front of the number 
of operations (it sounds like a joke, but it’s true!).
Now let’s look at some examples. See if you can figure out the run time 
for these algorithms.

Visualizing different Big O run times
Here’s a practical example you can follow at 
home with a few pieces of paper and a pencil. 
Suppose you have to draw a grid of 16 boxes.

Algorithm 1

One way to do it is to draw 16 boxes, one at 
a time. Remember, Big O notation counts 
the number of operations. In this example, 
drawing one box is one operation. You have  
to draw 16 boxes. How many operations will  
it take, drawing one box at a time?

It takes 16 steps to draw 16 boxes. What’s the running time for this  
algorithm?

What Big O  
notation looks like

What’s a good 
algorithm to  
draw this grid?

Drawing a grid  
one box at a time
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Algorithm 2

Try this algorithm instead. Fold the paper.

In this example, folding the paper once is an operation. You just made 
two boxes with that operation! 
Fold the paper again, and again, and again.

Unfold it after four folds, and you’ll have a beautiful grid! Every fold 
doubles the number of boxes. You made 16 boxes with 4 operations!

You can “draw” twice as many boxes with every fold, so you can draw 
16 boxes in 4 steps. What’s the running time for this algorithm? Come 
up with running times for both algorithms before moving on.
Answers: Algorithm 1 takes O(n) time, and algorithm 2 takes  
O(log n) time.

Drawing a grid  
in four folds
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Big O establishes a worst-case run time
Suppose you’re using simple search to look for a person in the phone 
book. You know that simple search takes O(n) time to run, which 
means in the worst case, you’ll have to look through every single entry 
in your phone book. In this case, you’re looking for Adit. This guy is 
the first entry in your phone book. So you didn’t have to look at every 
entry—you found it on the first try. Did this algorithm take O(n) time? 
Or did it take O(1) time because you found the person on the first try?
Simple search still takes O(n) time. In this case, you found what you 
were looking for instantly. That’s the best-case scenario. But Big O 
notation is about the worst-case scenario. So you can say that, in the 
worst case, you’ll have to look at every entry in the phone book once. 
That’s O(n) time. It’s a reassurance—you know that simple search will 
never be slower than O(n) time.

Some common Big O run times
Here are five Big O run times that you’ll encounter a lot, sorted from 
fastest to slowest:

• O(log n), also known as log time. Example: Binary search.

• O(n), also known as linear time. Example: Simple search.

• O(n * log n). Example: A fast sorting algorithm, like quicksort  
(coming up in chapter 4).

• O(n2). Example: A slow sorting algorithm, like selection sort  
(coming up in chapter 2).

• O(n!). Example: A really slow algorithm, like the traveling 
salesperson (coming up next!).

Suppose you’re drawing a grid of 16 boxes again, and you can choose 
from 5 different algorithms to do so. If you use the first algorithm, it 
will take you O(log n) time to draw the grid. You can do 10 operations 

Note

Along with the worst-case run time, it’s also important to look at the  
average-case run time. Worst case versus average case is discussed in  
chapter 4.
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per second. With O(log n) time, it will take you 4 operations to draw a 
grid of 16 boxes (log 16 is 4). So it will take you 0.4 seconds to draw  
the grid. What if you have to draw 1,024 boxes? It will take you  
log 1,024 = 10 operations, or 1 second to draw a grid of 1,024 boxes. 
These numbers are using the first algorithm.
The second algorithm is slower: it takes O(n) time. It will take 16 
operations to draw 16 boxes, and it will take 1,024 operations to draw 
1,024 boxes. How much time is that in seconds?
Here’s how long it would take to draw a grid for the rest of the 
algorithms, from fastest to slowest:

There are other run times, too, but these are the five most common.
This is a simplification. In reality you can’t convert from a Big O run 
time to a number of operations this neatly, but this is good enough 
for now. We’ll come back to Big O notation in chapter 4, after you’ve 
learned a few more algorithms. For now, the main takeaways are as 
follows:

• Algorithm speed isn’t measured in seconds, but in growth of the 
number of operations.

• Instead, we talk about how quickly the run time of an algorithm 
increases as the size of the input increases.

• Run time of algorithms is expressed in Big O notation.

• O(log n) is faster than O(n), but it gets a lot faster as the list of items 
you’re searching grows.
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EXERCISES
Give the run time for each of these scenarios in terms of Big O.
1.3   You have a name, and you want to find the person’s phone number 

in the phone book. 
1.4   You have a phone number, and you want to find the person’s name 

in the phone book. (Hint: You’ll have to search through the whole 
book!)

1.5   You want to read the numbers of every person in the phone book.
1.6   You want to read the numbers of just the As. (This is a tricky one! 

It involves concepts that are covered more in chapter 4. Read the 
answer—you may be surprised!)

The traveling salesperson
You might have read that last section and thought, “There’s no way I’ll 
ever run into an algorithm that takes O(n!) time.” Well, let me try to 
prove you wrong! Here’s an example of an algorithm with a really bad 
running time. This is a famous problem in computer science, because 
its growth is appalling and some very smart people think it can’t be 
improved. It’s called the traveling salesperson problem.

You have a salesperson.
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The salesperson has to go to five cities.

This salesperson, whom I’ll call Opus, wants to hit all five cities while 
traveling the minimum distance. Here’s one way to do that: look  
at every possible order in which he could travel to the cities.

He adds up the total distance and then picks the path with the  
lowest distance. There are 120 permutations with 5 cities, so it will  
take 120 operations to solve the problem for 5 cities. For 6 cities, it  
will take 720 operations (there are 720 permutations). For 7 cities,  
it will take 5,040 operations!

The number of  
operations  
increases drastically.
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In general, for n items, it will take n! (n factorial) operations to 
compute the result. So this is O(n!) time, or factorial time. It takes a 
lot of operations for everything except the smallest numbers. Once 
you’re dealing with 100+ cities, it’s impossible to calculate the answer in 
time—the Sun will collapse first.
This is a terrible algorithm! Opus should use a different one, right? But 
he can’t. This is one of the unsolved problems in computer science. 
There’s no fast known algorithm for it, and smart people think it’s 
impossible to have a smart algorithm for this problem. The best we can 
do is come up with an approximate solution; see chapter 10 for more.
One final note: if you’re an advanced reader, check out binary search 
trees! There’s a brief description of them in the last chapter.

Recap

• Binary search is a lot faster than simple search.

• O(log n) is faster than O(n), but it gets a lot faster once the list of 
items you’re searching through grows.

• Algorithm speed isn’t measured in seconds.

• Algorithm times are measured in terms of growth of an algorithm.

• Algorithm times are written in Big O notation.





2

In this chapter

• You learn about arrays and linked lists—two of the 
most basic data structures. They’re used absolutely 
everywhere. You already used arrays in chapter 1, 
and you’ll use them in almost every chapter in this 
book. Arrays are a crucial topic, so pay attention! 
But sometimes it’s better to use a linked list instead 
of an array. This chapter explains the pros and cons 
of both so you can decide which one is right for 
your algorithm.

• You learn your first sorting algorithm. A lot of algo-
rithms only work if your data is sorted. Remember 
binary search? You can run binary search only 
on a sorted list of elements. This chapter teaches 
you selection sort. Most languages have a sorting 
algorithm built in, so you’ll rarely need to write 
your own version from scratch. But selection sort is 
a stepping stone to quicksort, which I’ll cover in the 
next chapter. Quicksort is an important algorithm, 
and it will be easier to understand if you know one 
sorting algorithm already.

selection 
sort

21
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How memory works
Imagine you go to a show and need to check your things. A chest of 
drawers is available.

Each drawer can hold one element. You want to store two things, so you 
ask for two drawers.

What you need to know
To understand the performance analysis bits in this chapter, you need to 
know Big O notation and logarithms. If you don’t know those, I suggest 
you go back and read chapter 1. Big O notation will be used throughout 
the rest of the book.
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You store your two things here.

And you’re ready for the show! This is basically how your computer’s 
memory works. Your computer looks like a giant set of drawers, and 
each drawer has an address.

fe /0ffeeb is the address of a slot in memory.
Each time you want to store an item in memory, you ask the computer 
for some space, and it gives you an address where you can store your 
item. If you want to store multiple items, there are two basic ways to 
do so: arrays and lists. I’ll talk about arrays and lists next, as well as the 
pros and cons of each. There isn’t one right way to store items for every 
use case, so it’s important to know the differences.
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Arrays and linked lists
Sometimes you need to store a list of elements in memory. Suppose 
you’re writing an app to manage your todos. You’ll want to store the 
todos as a list in memory.
Should you use an array, or a linked list? Let’s store the todos in an 
array first, because it’s easier to grasp. Using an array means all your 
tasks are stored contiguously (right next to each other) in memory.

Now suppose you want to add a fourth task. But the next drawer is 
taken up by someone else’s stuff!

It’s like going to a movie with your friends and finding a place to sit—
but another friend joins you, and there’s no place for them. You have to 
move to a new spot where you all fit. In this case, you need to ask your 
computer for a different chunk of memory that can fit four tasks. Then 
you need to move all your tasks there.

Chapter 2  I  Selection sort
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If another friend comes by, you’re out of room again—and you all have 
to move a second time! What a pain. Similarly, adding new items to 
an array can be a big pain. If you’re out of space and need to move to a 
new spot in memory every time, adding a new item will be really slow. 
One easy fix is to “hold seats”: even if you have only 3 items in your task 
list, you can ask the computer for 10 slots, just in case. Then you can 
add 10 items to your task list without having to move. This is a good 
workaround, but you should be aware of a couple of downsides:

• You may not need the extra slots that you asked for, and then that 
memory will be wasted. You aren’t using it, but no one else can use  
it either.

• You may add more than 10 items to your task list and have to  
move anyway.

So it’s a good workaround, but it’s not a perfect solution. Linked lists 
solve this problem of adding items. 

Linked lists
With linked lists, your items can be anywhere in memory.

Each item stores the address of the next item in the list. A bunch of 
random memory addresses are linked together.
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It’s like a treasure hunt. You go to the first address, and it says, “The next 
item can be found at address 123.” So you go to address 123, and it says, 
“The next item can be found at address 847,” and so on. Adding an item 
to a linked list is easy: you stick it anywhere in memory and store the 
address with the previous item.
With linked lists, you never have to move your items. You also avoid 
another problem. Let’s say you go to a popular movie with five of your 
friends. The six of you are trying to find a place to sit, but the theater 
is packed. There aren’t six seats together. Well, sometimes this happens 
with arrays. Let’s say you’re trying to find 10,000 slots for an array. Your 
memory has 10,000 slots, but it doesn’t have 10,000 slots together. You 
can’t get space for your array! A linked list is like saying, “Let’s split up 
and watch the movie.” If there’s space in memory, you have space for 
your linked list.
If linked lists are so much better at inserts, what are arrays good for?

Arrays
Websites with top-10 lists use a scummy tactic to get more page views. 
Instead of showing you the list on one page, they put one item on each 
page and make you click Next to get to the next item in the list. For 
example, Top 10 Best TV Villains won’t show you the entire list on one 
page. Instead, you start at #10 (Newman), and you have to click Next on 
each page to reach #1 (Gustavo Fring). This technique gives the websites 
10 whole pages on which to show you ads, but it’s boring to click Next 9 
times to get to #1. It would be much better if the whole list was on one 
page and you could click each person’s name for more info.
Linked lists have a similar problem. Suppose you want to read the last 
item in a linked list. You can’t just read it, because you don’t know what 
address it’s at. Instead, you have to go to item #1 to get the address for 

Chapter 2  I  Selection sort

Linked memory 
addresses
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item #2. Then you have to go to item #2 to get the address for item #3. 
And so on, until you get to the last item. Linked lists are great if you’re 
going to read all the items one at a time: you can read one item, follow 
the address to the next item, and so on. But if you’re going to keep 
jumping around, linked lists are terrible.
Arrays are different. You know the address for every item in your array. 
For example, suppose your array contains five items, and you know it 
starts at address 00. What is the address of item #5?

Simple math tells you: it’s 04. Arrays are great if you want to read 
random elements, because you can look up any element in your array 
instantly. With a linked list, the elements aren’t next to each other, 
so you can’t instantly calculate the position of the fifth element in 
memory—you have to go to the first element to get the address to the 
second element, then go to the second element to get the address of  
the third element, and so on until you get to the fifth element.

Terminology
The elements in an array are numbered. This numbering starts from 0, 
not 1. For example, in this array, 20 is at position 1.

And 10 is at position 0. This usually throws new programmers for a 
spin. Starting at 0 makes all kinds of array-based code easier to write,  
so programmers have stuck with it. Almost every programming 
language you use will number array elements starting at 0. You’ll  
soon get used to it.
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The position of an element is called its index. So instead of saying, “20 is 
at position 1,” the correct terminology is, “20 is at index 1.” I’ll use index 
to mean position throughout this book.
Here are the run times for common operations on arrays and lists.

Question: Why does it take O(n) time to insert an element into an 
array? Suppose you wanted to insert an element at the beginning of an 
array. How would you do it? How long would it take? Find the answers 
to these questions in the next section!

EXERCISE
2.1  Suppose you’re building an app to keep track of your finances.
 

Every day, you write down everything you spent money on. At the 
end of the month, you review your expenses and sum up how much 
you spent. So, you have lots of inserts and a few reads. Should you 
use an array or a list? 

Chapter 2  I  Selection sort
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Inserting into the middle of a list
Suppose you want your todo list to work more like a calendar. Earlier, 
you were adding things to the end of the list.
Now you want to add them in the order in which they should  
be done.

What’s better if you want to insert elements in the middle: arrays or 
lists? With lists, it’s as easy as changing what the previous element 
points to.

But for arrays, you have to shift all the rest of the elements down.

And if there’s no space, you might have to copy everything to a new 
location! Lists are better if you want to insert elements into the middle. 

Unordered     Ordered 
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Deletions
What if you want to delete an element? Again, lists are better, because 
you just need to change what the previous element points to. With 
arrays, everything needs to be moved up when you delete an element.
Unlike insertions, deletions will always work. Insertions can fail 
sometimes when there’s no space left in memory. But you can always 
delete an element.
Here are the run times for common operations on arrays and  
linked lists.

It’s worth mentioning that insertions and deletions are O(1) time only 
if you can instantly access the element to be deleted. It’s a common 
practice to keep track of the first and last items in a linked list, so it 
would take only O(1) time to delete those.
Which are used more: arrays or lists? Obviously, it depends on the use 
case. But arrays see a lot of use because they allow random access. There 
are two different types of access: random access and sequential access. 
Sequential access means reading the elements one by one, starting 
at the first element. Linked lists can only do sequential access. If you 
want to read the 10th element of a linked list, you have to read the first 
9 elements and follow the links to the 10th element. Random access 
means you can jump directly to the 10th element. You’ll frequently 
hear me say that arrays are faster at reads. This is because they provide 
random access. A lot of use cases require random access, so arrays are 
used a lot. Arrays and lists are used to implement other data structures, 
too (coming up later in the book).
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EXERCISES 
2.2  Suppose you’re building an app for restaurants to take customer 

orders. Your app needs to store a list of orders. Servers keep adding 
orders to this list, and chefs take orders off the list and make them. 
It’s an order queue: servers add orders to the back of the queue, and 
the chef takes the first order off the queue and cooks it.

 Would you use an array or a linked list to implement this queue? 
(Hint: Linked lists are good for inserts/deletes, and arrays are good 
for random access. Which one are you going to be doing here?) 

2.3  Let’s run a thought experiment. Suppose Facebook keeps a list of 
usernames. When someone tries to log in to Facebook, a search is 
done for their username. If their name is in the list of usernames, 
they can log in. People log in to Facebook pretty often, so there are 
a lot of searches through this list of usernames. Suppose Facebook 
uses binary search to search the list. Binary search needs random 
access—you need to be able to get to the middle of the list of 
usernames instantly. Knowing this, would you implement the list  
as an array or a linked list? 

2.4   People sign up for Facebook pretty often, too. Suppose you decided 
to use an array to store the list of users. What are the downsides 
of an array for inserts? In particular, suppose you’re using binary 
search to search for logins. What happens when you add new users 
to an array? 

2.5   In reality, Facebook uses neither an array nor a linked list to store 
user information. Let’s consider a hybrid data structure: an array 
of linked lists. You have an array with 26 slots. Each slot points to a 
linked list. For example, the first slot in the array points to a linked 
list containing all the usernames starting with a. The second slot 
points to a linked list containing all the usernames starting with b, 
and so on.
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 Suppose Adit B signs up for Facebook, and you want to add them 
to the list. You go to slot 1 in the array, go to the linked list for slot 
1, and add Adit B at the end. Now, suppose you want to search for 
Zakhir H. You go to slot 26, which points to a linked list of all the  
Z names. Then you search through that list to find Zakhir H.

 Compare this hybrid data structure to arrays and linked lists. Is it 
slower or faster than each for searching and inserting? You don’t 
have to give Big O run times, just whether the new data structure 
would be faster or slower. 

Selection sort
Let’s put it all together to learn your second algorithm: 
selection sort. To follow this section, you need to 
understand arrays and lists, as well as Big O notation.
Suppose you have a bunch of music on your computer. 
For each artist, you have a play count.

You want to sort this list from most to least played, so that you can rank 
your favorite artists. How can you do it?
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One way is to go through the list and find the most-played artist. Add 
that artist to a new list.

Do it again to find the next-most-played artist.

Keep doing this, and you’ll end up with a sorted list.
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Let’s put on our computer science hats and see how long this will take to 
run. Remember that O(n) time means you touch every element in a list 
once. For example, running simple search over the list of artists means 
looking at each artist once.

To find the artist with the highest play count, you have to check each 
item in the list. This takes O(n) time, as you just saw. So you have an 
operation that takes O(n) time, and you have to do that n times:

This takes O(n × n) time or O(n2) time.
Sorting algorithms are very useful. Now you can sort

•   Names in a phone book

•   Travel dates

•   Emails (newest to oldest)



35

Selection sort is a neat algorithm, but it’s not very fast. Quicksort is a 
faster sorting algorithm that only takes O(n log n) time. It’s coming up 
in the next chapter!

EXAMPLE CODE LISTING
We didn’t show you the code to sort the music list, but following is 
some code that will do something very similar: sort an array from 
smallest to largest. Let’s write a function to find the smallest element  
in an array:

def findSmallest(arr): 
  smallest = arr[0]  Stores the smallest value  
  smallest_index = 0  Stores the index of the smallest value
  for i in range(1, len(arr)):
    if arr[i] < smallest:
      smallest = arr[i]
      smallest_index = i
  return smallest_index

Now you can use this function to write selection sort:

def selectionSort(arr):  Sorts an array
  newArr = []
  for i in range(len(arr)):
      smallest = findSmallest(arr)
      newArr.append(arr.pop(smallest))
  return newArr

print selectionSort([5, 3, 6, 2, 10])

Selection sort

Checking fewer elements each time
Maybe you’re wondering: as you go through the operations, the number 
of elements you have to check keeps decreasing. Eventually, you’re down 
to having to check just one element. So how can the run time still be 
O(n2)? That’s a good question, and the answer has to do with constants 
in Big O notation. I’ll get into this more in chapter 4, but here’s the gist.

You’re right that you don’t have to check a list of n elements each time. 
You check n elements, then n – 1, n - 2 … 2, 1. On average, you check a 
list that has 1/2 × n elements. The runtime is O(n × 1/2 × n). But constants 
like 1/2 are ignored in Big O notation (again, see chapter 4 for the full 
discussion), so you just write O(n × n) or O(n2).

Finds the smallest element in the 
array, and adds it to the new array
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Recap

• Your computer’s memory is like a giant set of drawers.

• When you want to store multiple elements, use an array or a list.

• With an array, all your elements are stored right next to each other.

• With a list, elements are strewn all over, and one element stores  
the address of the next one.

• Arrays allow fast reads.

• Linked lists allow fast inserts and deletes.

• All elements in the array should be the same type (all ints,  
all doubles, and so on).

Chapter 2  I  Selection sort
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3

In this chapter

• You learn about recursion. Recursion is a coding 
technique used in many algorithms. It’s a building 
block for understanding later chapters in this book.

• You learn how to break a problem down into a 
base case and a recursive case. The divide-and- 
conquer strategy (chapter 4) uses this simple  
concept to solve hard problems.

recursion

I’m excited about this chapter because it covers recursion, an 
elegant way to solve problems. Recursion is one of my favorite 
topics, but it’s divisive. People either love it or hate it, or hate it until 
they learn to love it a few years later. I personally was in that third 
camp. To make things easier for you, I have some advice:

• This chapter has a lot of code examples. Run the code for yourself 
to see how it works. 

• I’ll talk about recursive functions. At least once, step through a 
recursive function with pen and paper: something like, “Let’s see, 
I pass 5 into factorial, and then I return 5 times passing 4 into 
factorial, which is …,” and so on. Walking through a function 
like this will teach you how a recursive function works.
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This chapter also includes a lot of pseudocode. Pseudocode is a  
high-level description of the problem you’re trying to solve, in code.  
It’s written like code, but it’s meant to be closer to human speech.

Recursion
Suppose you’re digging through your grandma’s attic and come across a 
mysterious locked suitcase.

Grandma tells you that the key for the suitcase is probably in this  
other box.

This box contains more boxes, with more boxes inside those boxes. The 
key is in a box somewhere. What’s your algorithm to search for the key? 
Think of an algorithm before you read on.
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Here’s one approach.

1. Make a pile of boxes to look through.
2. Grab a box, and look through it.
3. If you find a box, add it to the pile to look through later.
4. If you find a key, you’re done!
5. Repeat.

Here’s an alternate approach.

1. Look through the box.
2. If you find a box, go to step 1.
3. If you find a key, you’re done!
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Which approach seems easier to you? The first approach uses a while 
loop. While the pile isn’t empty, grab a box and look through it:

def look_for_key(main_box):
  pile = main_box.make_a_pile_to_look_through()
  while pile is not empty:
    box = pile.grab_a_box()
    for item in box:
      if item.is_a_box():
        pile.append(item)
      elif item.is_a_key():
        print “found the key!”

The second way uses recursion. Recursion is where a function calls itself. 
Here’s the second way in pseudocode:

def look_for_key(box):
  for item in box:
    if item.is_a_box():
      look_for_key(item)  Recursion!
    elif item.is_a_key():
      print “found the key!”

Both approaches accomplish the same thing, but the second approach 
is clearer to me. Recursion is used when it makes the solution clearer. 
There’s no performance benefit to using recursion; in fact, loops are 
sometimes better for performance. I like this quote by Leigh Caldwell 
on Stack Overflow:  “Loops may achieve a performance gain for 
your program. Recursion may achieve a performance gain for your 
programmer. Choose which is more important in your situation!”1

Many important algorithms use recursion, so it’s important to 
understand the concept.

Base case and recursive case
Because a recursive function calls itself, it’s easy to write a 
function incorrectly that ends up in an infinite loop. For 
example, suppose you want to write a function that prints a countdown, 
like this:
> 3...2...1

1 http://stackoverflow.com/a/72694/139117.
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You can write it recursively, like so:
  def countdown(i):
  print i
  countdown(i-1)

Write out this code and run it. You’ll notice a problem: this function 
will run forever!

> 3...2...1...0...-1...-2...

(Press Ctrl-C to kill your script.)
When you write a recursive function, you have to tell it when to stop 
recursing. That’s why every recursive function has two parts: the base 
case, and the recursive case. The recursive case is when the function calls 
itself. The base case is when the function doesn’t call itself again … so it 
doesn’t go into an infinite loop.
Let’s add a base case to the countdown function:

def countdown(i):
  print i
  if i <= 0:  Base case
    return
  else:   Recursive case
    countdown(i-1)

Now the function works as expected. It goes something like this.

Infinite loop
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The stack 
This section covers the call stack. It’s an important concept  
in programming. The call stack is an important concept in 
general programming, and it’s also important to understand  
when using recursion.
Suppose you’re throwing a barbecue. You keep a todo list for the 
barbecue, in the form of a stack of sticky notes.

Remember back when we talked about arrays and lists, 
and you had a todo list? You could add todo items 
anywhere to the list or delete random items. The stack of 
sticky notes is much simpler. When you insert an item, 

it gets added to the top of the list. When you read an item, 
you only read the topmost item, and it’s taken off the list. So your todo 
list has only two actions: push (insert) and pop (remove and read).

Let’s see the todo list in action.
 

This data structure is called a stack. The stack is a simple data structure. 
You’ve been using a stack this whole time without realizing it!
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The call stack
Your computer uses a stack internally called the call stack. Let’s see it in 
action. Here’s a simple function:

def greet(name):
    print “hello, “ + name + “!”
    greet2(name)
    print “getting ready to say bye...”
    bye()

This function greets you and then calls two other functions. Here are 
those two functions:

def greet2(name):
    print “how are you, “ + name + “?”

  def bye():
    print “ok bye!”

Let’s walk through what happens when you call a function.

Suppose you call greet(“maggie”). First, your computer allocates a box 
of memory for that function call.

Now let’s use the memory. The variable name is set to “maggie”. That 
needs to be saved in memory.

Note

print is a function in Python, but to make things easier for this example,  
we’re pretending it isn’t. Just play along.
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Every time you make a function call, your computer saves the values 
for all the variables for that call in memory like this. Next, you print 
hello, maggie! Then you call greet2(“maggie”). Again, your 
computer allocates a box of memory for this function call.

Your computer is using a stack for these boxes. The second box is added 
on top of the first one. You print how are you, maggie? Then you 
return from the function call. When this happens, the box on top of the 
stack gets popped off. 

Now the topmost box on the stack is for the greet function, which 
means you returned back to the greet function. When you called the 
greet2 function, the greet function was partially completed. This is 
the big idea behind this section: when you call a function from another 
function, the calling function is paused in a partially completed state. All 
the values of the variables for that function are still stored in memory. 
Now that you’re done with the greet2 function, you’re back to the 
greet function, and you pick up where you left off. First you print 
getting ready to say bye…. You call the bye function.
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A box for that function is added to the top of the stack. Then you print 
ok bye! and return from the function call.

And you’re back to the greet function. There’s nothing else to be done, 
so you return from the greet function too. This stack, used to save the 
variables for multiple functions, is called the call stack.

EXERCISE
3.1 Suppose I show you a call stack like this.

What information can you give me, just based on this call stack? 
Now let’s see the call stack in action with a recursive function.

The call stack with recursion
Recursive functions use the call stack too! Let’s look at this in action 
with the factorial function. factorial(5) is written as 5!, and it’s 
defined like this: 5! = 5 * 4 * 3 * 2 * 1. Similarly, factorial(3) is  
3 * 2 * 1. Here’s a recursive function to calculate the factorial of a 
number:

def fact(x):
  if x == 1:
    return 1
  else:
    return x * fact(x-1)

Now you call fact(3). Let’s step through this call line by line and see 
how the stack changes. Remember, the topmost box in the stack tells 
you what call to fact you’re currently on.
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Notice that each call to fact has its own copy of x. You can’t access a 
different function’s copy of x.
The stack plays a big part in recursion. In the opening example, there 
were two approaches to find the key. Here’s the first way again.

This way, you make a pile of boxes to search through, so you always 
know what boxes you still need to search.
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But in the recursive approach, there’s no pile.

If there’s no pile, how does your algorithm know what boxes you still 
have to look through? Here’s an example.
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At this point, the call stack looks like this.

The “pile of boxes” is saved on the stack! This is a stack of half-
completed function calls, each with its own half-complete list of boxes 
to look through. Using the stack is convenient because you don’t have to 
keep track of a pile of boxes yourself—the stack does it for you.
Using the stack is convenient, but there’s a cost: saving all that info can 
take up a lot of memory. Each of those function calls takes up some 
memory, and when your stack is too tall, that means your computer is 
saving information for many function calls. At that point, you have two 
options:

• You can rewrite your code to use a loop instead.

• You can use something called tail recursion. That’s an advanced 
recursion topic that is out of the scope of this book. It’s also only 
supported by some languages, not all.

EXERCISE
3.2 Suppose you accidentally write a recursive function that runs 

forever. As you saw, your computer allocates memory on the 
stack for each function call. What happens to the stack when your 
recursive function runs forever?
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Recap

• Recursion is when a function calls itself.

• Every recursive function has two cases: the base case  
and the recursive case.

• A stack has two operations: push and pop.

• All function calls go onto the call stack.

• The call stack can get very large, which takes up a lot of memory.
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In this chapter

• You learn about divide-and-conquer. Sometimes 
you’ll come across a problem that can’t be solved 
by any algorithm you’ve learned. When a good 
algorithmist comes across such a problem, they 
don’t just give up. They have a toolbox full of  
techniques they use on the problem, trying to 
come up with a solution. Divide-and-conquer  
is the first general technique you learn.

• You learn about quicksort, an elegant sorting  
algorithm that’s often used in practice. Quicksort 
uses divide-and-conquer.

51

quicksort

You learned all about recursion in the last chapter. This chapter 
focuses on using your new skill to solve problems. We’ll explore 
divide and conquer (D&C), a well-known recursive technique for 
solving problems.
This chapter really gets into the meat of algorithms. After all, 
an algorithm isn’t very useful if it can only solve one type of 
problem. Instead, D&C gives you a new way to think about solving 
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problems. D&C is another tool in your toolbox. When you get a new 
problem, you don’t have to be stumped. Instead, you can ask, “Can I 
solve this if I use divide and conquer?”
At the end of the chapter, you’ll learn your first major D&C algorithm: 
quicksort. Quicksort is a sorting algorithm, and a much faster one than 
selection sort (which you learned in chapter 2). It’s a good example of 
elegant code.

Divide & conquer
D&C can take some time to grasp. So, we’ll do three 
examples. First I’ll show you a visual example. Then 
I’ll do a code example that is less pretty but maybe 
easier. Finally, we’ll go through quicksort, a sorting 
algorithm that uses D&C.
Suppose you’re a farmer with a plot of land.

You want to divide this farm evenly into square plots. You want the plots 
to be as big as possible. So none of these will work.
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How do you figure out the largest square size you can use for a plot of 
land? Use the D&C strategy! D&C algorithms are recursive algorithms. 
To solve a problem using D&C, there are two steps:

1. Figure out the base case. This should be the simplest possible case.
2. Divide or decrease your problem until it becomes the base case.

Let’s use D&C to find the solution to this problem. What is the largest 
square size you can use? 
First, figure out the base case. The easiest case would be if one side was 
a multiple of the other side.

Suppose one side is 25 meters (m) and the other side is 50 m. Then the 
largest box you can use is 25 m × 25 m. You need two of those boxes to 
divide up the land.
Now you need to figure out the recursive case. This is where D&C 
comes in. According to D&C, with every recursive call, you have to 
reduce your problem. How do you reduce the problem here? Let’s start 
by marking out the biggest boxes you can use.
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You can fit two 640 × 640 boxes in there, and there’s some land still  
left to be divided. Now here comes the “Aha!” moment. There’s a  
farm segment left to divide. Why don’t you apply the same algorithm  
to this segment?

So you started out with a 1680 × 640 farm that needed to be split up. 
But now you need to split up a smaller segment, 640 × 400. If you find 
the biggest box that will work for this size, that will be the biggest box  
that will work for the entire farm. You just reduced the problem from  
a 1680 × 640 farm to a 640 × 400 farm!

Let’s apply the same algorithm again. Starting 
with a 640 × 400m farm, the biggest box you 
can create is 400 × 400 m.

Euclid’s algorithm

“If you find the biggest box that will work for this size, that will be the 
biggest box that will work for the entire farm.” If it’s not obvious to you 
why this statement is true, don’t worry. It isn’t obvious. Unfortunately, the 
proof for why it works is a little too long to include in this book, so you’ll 
just have to believe me that it works. If you want to understand the proof, 
look up Euclid’s algorithm. The Khan academy has a good explanation 
here: https://www.khanacademy.org/computing/computer-science/
cryptography/modarithmetic/a/the-euclidean-algorithm.

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm


55Divide & conquer

And that leaves you with a smaller segment, 400 × 240 m.

And you can draw a box on that to get an even smaller segment,  
240 × 160 m.

And then you draw a box on that to get an even smaller segment. 

Hey, you’re at the base case: 80 is a factor of 160. If you split up this 
segment using boxes, you don’t have anything left over!
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So, for the original farm, the biggest plot size you can use is 80 × 80 m. 

To recap, here’s how D&C works:
1. Figure out a simple case as the base case.
2. Figure out how to reduce your problem and get to the base case.

D&C isn’t a simple algorithm that you can apply to a problem. Instead, 
it’s a way to think about a problem. Let’s do one more example.

You’re given an array of numbers.
 

You have to add up all the numbers and return the total. It’s pretty easy 
to do this with a loop:
def sum(arr):
  total = 0
  for x in arr:
    total += x
  return total

print sum([1, 2, 3, 4])

But how would you do this with a recursive function?
Step 1:  Figure out the base case. What’s the simplest array you could 
get? Think about the simplest case, and then read on. If you get an array 
with 0 or 1 element, that’s pretty easy to sum up.
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So that will be the base case.
Step 2: You need to move closer to an empty array with every recursive 
call. How do you reduce your problem size? Here’s one way.

It’s the same as this.

In either case, the result is 12. But in the second version, you’re passing 
a smaller array into the sum function. That is, you decreased the size of 
your problem!
Your sum function could work like this.
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Here it is in action.

Tip

When you’re writing a recursive function involving an array, the base case is 
often an empty array or an array with one element. If you’re stuck, try that first.

Remember, recursion keeps track of the state.
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EXERCISES
4.1 Write out the code for the earlier sum function.
4.2 Write a recursive function to count the number of items in a list.
4.3 Find the maximum number in a list.
4.4  Remember binary search from chapter 1? It’s a divide-and-conquer 

algorithm, too. Can you come up with the base case and recursive 
case for binary search?

Sneak peak at functional programming
“Why would I do this recursively if I can do it easily with a loop?” you 
may be thinking. Well, this is a sneak peek into functional programming! 
Functional programming languages like Haskell don’t have loops, so 
you have to use recursion to write functions like this. If you have a good 
understanding of recursion, functional languages will be easier to learn. 
For example, here’s how you’d write a sum function in Haskell:

sum [] = 0   Base case                   
sum (x:xs) = x + (sum xs)   Recursive case 

Notice that it looks like you have two definitions for the function. The first 
definition is run when you hit the base case. The second definition runs 
at the recursive case. You can also write this function in Haskell using an 
if statement:

sum arr = if arr == []
            then 0
            else (head arr) + (sum (tail arr))

But the first definition is easier to read. Because Haskell makes heavy use 
of recursion, it includes all kinds of niceties like this to make recursion 
easy. If you like recursion, or you’re interested in learning a new language, 
check out Haskell.
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Quicksort
Quicksort is a sorting algorithm. It’s much faster than selection sort 
and is frequently used in real life. For example, the C standard library 
has a function called qsort, which is its implementation of quicksort. 
Quicksort also uses D&C.
Let’s use quicksort to sort an array. What’s the simplest array that a 
sorting algorithm can handle (remember my tip from the previous 
section)? Well, some arrays don’t need to be sorted at all.

 

Empty arrays and arrays with just one element will be the base case. You 
can just return those arrays as is—there’s nothing to sort:

def quicksort(array):
  if len(array) < 2:
    return array

Let’s look at bigger arrays. An array with two elements is pretty easy to 
sort, too.

What about an array of three elements?

Remember, you’re using D&C. So you want to break down this array 
until you’re at the base case. Here’s how quicksort works. First, pick an 
element from the array. This element is called the pivot.

We’ll talk about how to pick a good pivot later. For now, 
let’s say the first item in the array is the pivot.
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Now find the elements smaller than the pivot and the elements larger 
than the pivot.

This is called partitioning. Now you have 

• A sub-array of all the numbers less than the pivot 

• The pivot 

• A sub-array of all the numbers greater than the pivot
The two sub-arrays aren’t sorted. They’re just partitioned. But if they 
were sorted, then sorting the whole array would be pretty easy.

If the sub-arrays are sorted, then you can combine the whole thing like 
this—left array + pivot + right array—and you get a sorted 
array. In this case, it’s [10, 15] + [33] + [] =  
[10, 15, 33], which is a sorted array.
How do you sort the sub-arrays? Well, the quicksort base case already 
knows how to sort arrays of two elements (the left sub-array) and 
empty arrays (the right sub-array). So if you call quicksort on the two 
sub-arrays and then combine the results, you get a sorted array!

quicksort([15, 10]) + [33] + quicksort([])
> [10, 15, 33]  A sorted array
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This will work with any pivot. Suppose you choose 15 as the  
pivot instead.

Both sub-arrays have only one element, and you know how to sort 
those. So now you know how to sort an array of three elements. Here 
are the steps:
1. Pick a pivot.
2. Partition the array into two sub-arrays: elements less than the pivot 

and elements greater than the pivot.
3. Call quicksort recursively on the two sub-arrays.

What about an array of four elements?
 

Suppose you choose 33 as the pivot again.

The array on the left has three elements. You already know how to sort 
an array of three elements: call quicksort on it recursively.
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So you can sort an array of four elements. And if you can sort an array 
of four elements, you can sort an array of five elements. Why is that? 
Suppose you have this array of five elements.

Here are all the ways you can partition this array, depending on what 
pivot you choose.

Notice that all of these sub-arrays have somewhere between 0 and 4 
elements. And you already know how to sort an array of 0 to 4 elements 
using quicksort! So no matter what pivot you pick, you can call 
quicksort recursively on the two sub-arrays. 
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For example, suppose you pick 3 as the pivot. You call quicksort on the 
sub-arrays. 

The sub-arrays get sorted, and then you combine the whole thing to get 
a sorted array. This works even if you choose 5 as the pivot.

This works with any element as the pivot. So you can sort an array 
of five elements. Using the same logic, you can sort an array of six 
elements, and so on.
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Here’s the code for quicksort:

def quicksort(array):
  if len(array) < 2:
    return array         Base case: arrays with 0 or 1 element are already “sorted.”
  else:
    pivot = array[0]        Recursive case
    less = [i for i in array[1:] if i <= pivot]          Sub-array of all the elements  

less than the pivot
    greater = [i for i in array[1:] if i > pivot]              Sub-array of all the elements  

greater than the pivot
    return quicksort(less) + [pivot] + quicksort(greater)

print quicksort([10, 5, 2, 3])

Inductive proofs
You just got a sneak peak into inductive proofs! Inductive proofs are one 
way to prove that your algorithm works. Each inductive proof has two 
steps: the base case and the inductive case. Sound familiar? For example, 
suppose I want to prove that I can climb to the top of a ladder. In the 
inductive case, if my legs are on a rung, I can put my legs on the next rung. 
So if I’m on rung 2, I can climb to rung 3. That’s the inductive case. For 
the base case, I’ll say that my legs are on rung 1. Therefore, I can climb the 
entire ladder, going up one rung at a time.

You use similar reasoning for quicksort. In the base case, I showed that the 
algorithm works for the base case: arrays of size 0 and 1. In the inductive 
case, I showed that if quicksort works for an array of size 1, it will work 
for an array of size 2. And if it works for arrays of size 2, it will work for 
arrays of size 3, and so on. Then I can say that quicksort will work for all 
arrays of any size. I won’t go deeper into inductive proofs here, but they’re 
fun and go hand-in-hand with D&C.
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Big O notation revisited
Quicksort is unique because its speed depends on the pivot you choose. 
Before I talk about quicksort, let’s look at the most common Big O run 
times again.

The example times in this chart are estimates if you perform 10 
operations per second. These graphs aren’t precise—they’re just there 
to give you a sense of how different these run times are. In reality, your 
computer can do way more than 10 operations per second.
Each run time also has an example algorithm attached. Check out 
selection sort, which you learned in chapter 2. It’s O(n2). That’s a pretty 
slow algorithm.
There’s another sorting algorithm called merge sort, which is  
O(n log n). Much faster! Quicksort is a tricky case. In the worst case, 
quicksort takes O(n2) time.
It’s as slow as selection sort! But that’s the worst case. In the average 
case, quicksort takes O(n log n) time. So you might be wondering:

• What do worst case and average case mean here?

• If quicksort is O(n log n) on average, but merge sort is O(n log n) 
always, why not use merge sort? Isn’t it faster?

Estimates based on a slow computer that performs 10 operations per second
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Merge sort vs. quicksort
Suppose you have this simple function to print every item in a list:

def print_items(list):
  for item in list:
    print item

This function goes through every item in the list and prints it out. 
Because it loops over the whole list once, this function runs in O(n) 
time. Now, suppose you change this function so it sleeps for 1 second 
before it prints out an item:

from time import sleep
def print_items2(list):
  for item in list:
    sleep(1)
    print item

Before it prints out an item, it will pause for 1 second. Suppose you 
print a list of five items using both functions.

Both functions loop through the list once, so they’re both O(n) time. 
Which one do you think will be faster in practice? I think print_items 
will be much faster because it doesn’t pause for 1 second before printing 
an item. So even though both functions are the same speed in Big O 
notation, print_items is faster in practice. When you write Big O 
notation like O(n), it really means this.

c is some fixed amount of time that your algorithm takes. It’s called the 
constant. For example, it might be 10 milliseconds * n for print_
items versus 1 second * n for print_items2. 
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You usually ignore that constant, because if two algorithms have 
different Big O times, the constant doesn’t matter. Take binary search 
and simple search, for example. Suppose both algorithms had these 
constants.

You might say, “Wow! Simple search has a constant of 10 milliseconds, 
but binary search has a constant of 1 second. Simple search is way 
faster!” Now suppose you’re searching a list of 4 billion elements. Here 
are the times.

As you can see, binary search is still way faster. That constant didn’t 
make a difference at all.
But sometimes the constant can make a difference. Quicksort versus 
merge sort is one example. Quicksort has a smaller constant than 
merge sort. So if they’re both O(n log n) time, quicksort is faster. And 
quicksort is faster in practice because it hits the average case way more 
often than the worst case.
So now you’re wondering: what’s the average case versus the worst case?

Average case vs. worst case
The performance of quicksort heavily depends on the pivot you choose. 
Suppose you always choose the first element as the pivot. And you  
call quicksort with an array that is already sorted. Quicksort doesn’t 
check to see whether the input array is already sorted. So it will still try 
to sort it. 
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Notice how you’re not splitting the array into two halves. Instead, one 
of the sub-arrays is always empty. So the call stack is really long. Now 
instead, suppose you always picked the middle element as the pivot. 
Look at the call stack now.

It’s so short! Because you divide the array in half every time, you don’t 
need to make as many recursive calls. You hit the base case sooner, and 
the call stack is much shorter.
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The first example you saw is the worst-case scenario, and the second 
example is the best-case scenario. In the worst case, the stack size is 
O(n). In the best case, the stack size is O(log n).
Now look at the first level in the stack. You pick one element as the 
pivot, and the rest of the elements are divided into sub-arrays. You 
touch all eight elements in the array. So this first operation takes O(n) 
time. You touched all eight elements on this level of the call stack. But 
actually, you touch O(n) elements on every level of the call stack.
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Even if you partition the array differently, you’re still touching O(n) 
elements every time.
 

So each level takes O(n) time to complete.

In this example, there are O(log n) levels (the technical way to say  
that is, “The height of the call stack is O(log n)”). And each level takes  
O(n) time. The entire algorithm will take O(n) * O(log n) = O(n log n) 
time. This is the best-case scenario.
In the worst case, there are O(n) levels, so the algorithm will take  
O(n) * O(n) = O(n2) time.
Well, guess what? I’m here to tell you that the best case is also the 
average case. If you always choose a random element in the array as the 
pivot, quicksort will complete in O(n log n) time on average. Quicksort 
is one of the fastest sorting algorithms out there, and it’s a very good 
example of D&C.
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EXERCISES
How long would each of these operations take in Big O notation?
4.5 Printing the value of each element in an array. 
4.6 Doubling the value of each element in an array.
4.7 Doubling the value of just the first element in an array. 
4.8 Creating a multiplication table with all the elements in the array. So 

if your array is [2, 3, 7, 8, 10], you first multiply every element by 2, 
then multiply every element by 3, then by 7, and so on. 

Recap

• D&C works by breaking a problem down into smaller and smaller 
pieces. If you’re using D&C on a list, the base case is probably an 
empty array or an array with one element.

• If you’re implementing quicksort, choose a random element as the 
pivot. The average runtime of quicksort is O(n log n)!

• The constant in Big O notation can matter sometimes. That’s why 
quicksort is faster than merge sort.

• The constant almost never matters for simple search versus binary 
search, because O(log n) is so much faster than O(n) when your list 
gets big.
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In this chapter

• You learn about hash tables, one of the most  
useful basic data structures. Hash tables have many 
uses; this chapter covers the common use cases.

• You learn about the internals of hash tables:  
implementation, collisions, and hash functions. 
This will help you understand how to analyze a 
hash table’s performance.

 
hash tables 5

Suppose you work at a grocery store. When a customer 
buys produce, you have to look up the price in a book. If 
the book is unalphabetized, it can take you a long time to 
look through every single line for apple. You’d be doing 
simple search from chapter 1, where you have to look at 
every line. Do you remember how long that would take? 
O(n) time. If the book is alphabetized, you could run 
binary search to find the price of an apple. That would 
only take O(log n) time.
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As a reminder, there’s a big difference between O(n) and O(log n) time! 
Suppose you could look through 10 lines of the book per second. Here’s 
how long simple search and binary search would take you.

You already know that binary search is darn fast. But as a cashier, 
looking things up in a book is a pain, even if the book is sorted. You can 
feel the customer steaming up as you search for items in the book. What 
you really need is a buddy who has all the names and prices memorized. 
Then you don’t need to look up anything: you ask her, and she tells you 
the answer instantly.
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Your buddy Maggie can give you the price in O(1) time for any item, no 
matter how big the book is. She’s even faster than binary search.

What a wonderful person! How do you get a “Maggie”?
Let’s put on our data structure hats. You know two data structures so 
far: arrays and lists (I won’t talk about stacks because you can’t really 
“search” for something in a stack). You could implement this book as  
an array.

Each item in the array is really two items: one is the name of a kind of 
produce, and the other is the price. If you sort this array by name, you 
can run binary search on it to find the price of an item. So you can find 
items in O(log n) time. But you want to find items in O(1) time. That is, 
you want to make a “Maggie.” That’s where hash functions come in.



76 Chapter 5  I  Hash tables

Hash functions
A hash function is a function where you put in a string1 and you get 
back a number.

In technical terminology, we’d say that a hash function “maps strings 
to numbers.” You might think there’s no discernable pattern to what 
number you get out when you put a string in. But there are some 
requirements for a hash function:

• It needs to be consistent. For example, suppose you put in “apple” and 
get back “4”. Every time you put in “apple”, you should get “4” back. 
Without this, your hash table won’t work.

• It should map different words to different numbers. For example, a 
hash function is no good if it always returns “1” for any word you put 
in. In the best case, every different word should map to a different 
number.

So a hash function maps strings to numbers. What is that good for? 
Well, you can use it to make your “Maggie”!
Start with an empty array:

You’ll store all of your prices in this array. Let’s add the price of an apple. 
Feed “apple” into the hash function.

1 String here means any kind of data—a sequence of bytes.
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The hash function outputs “3”. So let’s store the price of an apple at 
index 3 in the array.

Let’s add milk. Feed “milk” 
into the hash function.

The hash function says “0”. Let’s store the price of milk at index 0.

Keep going, and eventually the whole array will be full of prices.

Now you ask, “Hey, what’s the price of an avocado?” You don’t need to 
search for it in the array. Just feed “avocado” into the hash function.

It tells you that the price is stored at index 4. And sure enough,  
there it is.
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The hash function tells you exactly where the price is stored, so you 
don’t have to search at all! This works because

• The hash function consistently maps a name to the same index. Every 
time you put in “avocado”, you’ll get the same number back. So you 
can use it the first time to find where to store the price of an avocado, 
and then you can use it to find where you stored that price.

• The hash function maps different strings to different indexes. 
“Avocado” maps to index 4. “Milk” maps to index 0. Everything maps 
to a different slot in the array where you can store its price.

• The hash function knows how big your array is and only returns valid 
indexes. So if your array is 5 items, the hash function doesn’t return 
100 … that wouldn’t be a valid index in the array.

You just built a “Maggie”! Put a hash function and an array together, 
and you get a data structure called a hash table. A hash table is the first 
data structure you’ll learn that has some extra logic behind it. Arrays 
and lists map straight to memory, but hash tables are smarter. They use 
a hash function to intelligently figure out where to store elements.
Hash tables are probably the most useful complex data structure 
you’ll learn. They’re also known as hash maps, maps, dictionaries, and 
associative arrays. And hash tables are fast! Remember our discussion 
of arrays and linked lists back in chapter 2? You can get an item from an 
array instantly. And hash tables use an array to store the data, so they’re 
equally fast.
You’ll probably never have to implement hash tables yourself. Any good 
language will have an implementation for hash tables. Python has hash 
tables; they’re called dictionaries. You can make a new hash table using 
the dict function:
>>> book = dict()

book is a new hash table. Let’s add some prices to book:

>>> book[“apple”] = 0.67  An apple costs 67 cents.
>>> book[“milk”] = 1.49  Milk costs $1.49.
>>> book[“avocado”] = 1.49
>>> print book

{‘avocado’: 1.49, ‘apple’: 0.67, ‘milk’: 1.49}
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Pretty easy! Now let’s ask for the price of an avocado:

>>> print book[“avocado”]
1.49          The price of an avocado

A hash table has keys and values. In the book hash, the names of 
produce are the keys, and their prices are the values. A hash table maps 
keys to values.
In the next section, you’ll see some examples where hash tables are 
really useful.

EXERCISES
It’s important for hash functions to consistently return the same output 
for the same input. If they don’t, you won’t be able to find your item 
after you put it in the hash table!
Which of these hash functions are consistent?
5.1 f(x) = 1  Returns “1” for all input

5.2 f(x) = rand()  Returns a random number every time

5.3 f(x) = next_empty_slot()  

5.4 f(x) = len(x)  

Use cases
Hash tables are used everywhere. This section will show you a few  
use cases.

Using hash tables for lookups
Your phone has a handy phonebook built in.
Each name has a phone number associated with it.

Returns the index of the next 
empty slot in the hash table

Uses the length of the 
string as the index
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Suppose you want to build a phone book like this. You’re mapping 
people’s names to phone numbers. Your phone book needs to have this 
functionality:

• Add a person’s name and the phone number associated  
with that person.

• Enter a person’s name, and get the phone number associated  
with that name.

This is a perfect use case for hash tables! Hash tables are  
great when you want to

• Create a mapping from one thing to another thing

• Look something up

Building a phone book is pretty easy. First, make a new hash table:

>>> phone_book = dict()

By the way, Python has a shortcut for making a new hash table. You can 
use two curly braces:

>>> phone_book = {}  Same as phone_book = dict()

Let’s add the phone numbers of some people into this phone book:

>>> phone_book[“jenny”] = 8675309

>>> phone_book[“emergency”] = 911

That’s all there is to it! Now, suppose you want to find 
Jenny’s phone number. Just pass the key in to the hash:

>>> print phone_book[“jenny”]

8675309   Jenny’s phone number

Imagine if you had to do this using an array instead. 
How would you do it? Hash tables make it easy to model a relationship 
from one item to another.
Hash tables are used for lookups on a much larger scale. For example, 
suppose you go to a website like http://adit.io. Your computer has to 
translate adit.io to an IP address.
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For any website you go to, the address has to be translated to an IP 
address.

Wow, mapping a web address to an IP address? Sounds like a perfect 
use case for hash tables! This process is called DNS resolution. Hash 
tables are one way to provide this functionality.

Preventing duplicate entries
Suppose you’re running a voting booth. Naturally, every person can 
vote just once. How do you make sure they haven’t voted before? When 
someone comes in to vote, you ask for their full name. Then you check 
it against the list of people who have voted.

If their name is on the list, this person has already voted—kick them 
out! Otherwise, you add their name to the list and let them vote. Now 
suppose a lot of people have come in to vote, and the list of people who 
have voted is really long.
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Each time someone new comes in to vote, you have to scan this giant 
list to see if they’ve already voted. But there’s a better way: use a hash!
First, make a hash to keep track of the people who have voted:
>>> voted = {}

When someone new comes in to vote, check if they’re already in  
the hash:
>>> value = voted.get(“tom”)

The get function returns the value if “tom” is in the hash table. 
Otherwise, it returns None. You can use this to check if someone  
has already voted!

Here’s the code:

voted = {}

def check_voter(name):
  if voted.get(name):
    print “kick them out!”
  else:
    voted[name] = True
    print “let them vote!”

Let’s test it a few times:
>>> check_voter(“tom”)
let them vote!
>>> check_voter(“mike”)
let them vote!
>>> check_voter(“mike”)
kick them out!

The first time Tom goes in, this will print, “let them vote!” Then Mike 
goes in, and it prints, “let them vote!” Then Mike tries to go a second 
time, and it prints, “kick them out!”



83Use cases

Remember, if you were storing these names in a list of people who have 
voted, this function would eventually become really slow, because it 
would have to run a simple search over the entire list. But you’re storing 
their names in a hash table instead, and a hash table instantly tells you 
whether this person’s name is in the hash table or not. Checking for 
duplicates is very fast with a hash table.

Using hash tables as a cache
One final use case: caching. If you work on a website, you 
may have heard of caching before as a good thing to do. 
Here’s the idea. Suppose you visit facebook.com:
1. You make a request to Facebook’s server.
2. The server thinks for a second and comes up with  

the web page to send to you.
3. You get a web page.

For example, on Facebook, the server may be collecting all of your 
friends’ activity to show you. It takes a couple of seconds to collect all 
that activity and shows it to you. That couple of seconds can feel like a 
long time as a user. You might think, “Why is Facebook being so slow?” 
On the other hand, Facebook’s servers have to serve millions of people, 
and that couple of seconds adds up for them. Facebook’s servers are 
really working hard to serve all of those websites. Is there a way to make 
Facebook faster and have its servers do less work at the same time?
Suppose you have a niece who keeps asking you about planets. “How far 
is Mars from Earth?” “How far is the Moon?” “How far is Jupiter?” Each 
time, you have to do a Google search and give her an answer. It takes 
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a couple of minutes. Now, suppose she always asked, “How far is the 
Moon?” Pretty soon, you’d memorize that the Moon is 238,900 miles 
away. You wouldn’t have to look it up on Google … you’d just remember 
and answer. This is how caching works: websites remember the data 
instead of recalculating it.
If you’re logged in to Facebook, all the content you see is tailored just 
for you. Each time you go to facebook.com, its servers have to think 
about what content you’re interested in. But if you’re not logged in to 
Facebook, you see the login page. Everyone sees the same login page. 
Facebook is asked the same thing over and over: “Give me the home 
page when I’m logged out.” So it stops making the server do work to 
figure out what the home page looks like. Instead, it memorizes what 
the home page looks like and sends it to you.

This is called caching. It has two advantages:
• You get the web page a lot faster, just like when you memorized the 

distance from Earth to the Moon. The next time your niece asks you, 
you won’t have to Google it. You can answer instantly.

• Facebook has to do less work.

Caching is a common way to make things faster. All big websites use 
caching. And that data is cached in a hash! 
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Facebook isn’t just caching the home page. It’s also caching the About 
page, the Contact page, the Terms and Conditions page, and a lot more. 
So it needs a mapping from page URL to page data.

When you visit a page on Facebook, it first checks whether the page is 
stored in the hash.

Here it is in code:

cache = {}

def get_page(url):
  if cache.get(url):
    return cache[url]  Returns cached data
  else:
    data = get_data_from_server(url)
    cache[url] = data  Saves this data in your cache first
    return data

Here, you make the server do work only if the URL isn’t in the cache. 
Before you return the data, though, you save it in the cache. The next 
time someone requests this URL, you can send the data from the cache 
instead of making the server do the work.
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Recap
To recap, hashes are good for
• Modeling relationships from one thing to another thing
• Filtering out duplicates
• Caching/memorizing data instead of making your server do work

Collisions
Like I said earlier, most languages have hash tables. You don’t need to 
know how to write your own. So, I won’t talk about the internals of hash 
tables too much. But you still care about performance! To understand 
the performance of hash tables, you first need to understand what 
collisions are. The next two sections cover collisions and performance.
First, I’ve been telling you a white lie. I told you that a hash function 
always maps different keys to different slots in the array.

In reality, it’s almost impossible to write a hash function that does this. 
Let’s take a simple example. Suppose your array contains 26 slots.

And your hash function is really simple: it assigns a spot in the array 
alphabetically.
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Maybe you can already see the problem. You 
want to put the price of apples in your hash. 
You get assigned the first slot.

Then you want to put the price of bananas in the hash. You get assigned 
the second slot.

Everything is going so well! But now you want to put the price of 
avocados in your hash. You get assigned the first slot again.

Oh no! Apples have that slot already! What to do? This is called a 
collision: two keys have been assigned the same slot. This is a problem. 
If you store the price of avocados at that slot, you’ll overwrite the price 
of apples. Then the next time someone asks for the price of apples, 
they will get the price of avocados instead! Collisions are bad, and you 
need to work around them. There are many different ways to deal with 
collisions. The simplest one is this: if multiple keys map to the same 
slot, start a linked list at that slot.
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In this example, both “apple” and “avocado” map to the same slot. 
So you start a linked list at that slot. If you need to know the price of 
bananas, it’s still quick. If you need to know the price of apples, it’s a 
little slower. You have to search through this linked list to find “apple”. If 
the linked list is small, no big deal—you have to search through three or 
four elements. But suppose you work at a grocery store where you only 
sell produce that starts with the letter A.

Hey, wait a minute! The entire hash table is totally empty except for one 
slot. And that slot has a giant linked list! Every single element in this 
hash table is in the linked list. That’s as bad as putting everything in a 
linked list to begin with. It’s going to slow down your hash table.
There are two lessons here:
• Your hash function is really important. Your hash function mapped 

all the keys to a single slot. Ideally, your hash function would map 
keys evenly all over the hash.

• If those linked lists get long, it slows down your hash table a lot. But 
they won’t get long if you use a good hash function!

Hash functions are important. A good hash function will give you very 
few collisions. So how do you pick a good hash function? That’s coming 
up in the next section!

Performance
You started this chapter at the grocery store. You wanted to build 
something that would give you the prices for produce instantly. Well, 
hash tables are really fast.
In the average case, hash tables take O(1) for everything. O(1) is called 
constant time. You haven’t seen constant time before. It doesn’t mean 
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instant. It means the time taken will stay the same, regardless of how  
big the hash table is. For example, you know that simple search takes 
linear time.

Binary search is faster—it takes log time:

Looking something up in a hash table takes constant time.

See how it’s a flat line? That means it doesn’t matter whether your hash 
table has 1 element or 1 billion elements—getting something out of 
a hash table will take the same amount of time. Actually, you’ve seen 
constant time before. Getting an item out of an array takes constant 
time. It doesn’t matter how big your array is; it takes the same amount 
of time to get an element. In the average case, hash tables are really fast.
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In the worst case, a hash table takes O(n)—linear time—for everything, 
which is really slow. Let’s compare hash tables to arrays and lists.

Look at the average case for hash tables. Hash tables are as fast as arrays 
at searching (getting a value at an index). And they’re as fast as linked 
lists at inserts and deletes. It’s the best of both worlds! But in the worst 
case, hash tables are slow at all of those. So it’s important that you don’t 
hit worst-case performance with hash tables. And to do that, you need 
to avoid collisions. To avoid collisions, you need

• A low load factor

• A good hash function

Load factor
The load factor of a hash table  
is easy to calculate.

Hash tables use an array for storage, so you count the number of 
occupied slots in an array. For example, this hash table has a load factor 
of 2/5, or 0.4.

Note
Before you start this next section, know that this isn’t required reading. I’m 
going to talk about how to implement a hash table, but you’ll never have 
to do that yourself. Whatever programming language you use will have an 
implementation of hash tables built in. You can use the built-in hash table 
and assume it will have good performance. The next section gives you a 
peek under the hood.
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What’s the load factor of this hash table?

If you said 1/3, you’re right. Load factor measures how many empty slots 
remain in your hash table.
Suppose you need to store the price of 100 produce items in your hash 
table, and your hash table has 100 slots. In the best case, each item will 
get its own slot.

This hash table has a load factor of 1. What if your hash table has only 
50 slots? Then it has a load factor of 2. There’s no way each item will 
get its own slot, because there aren’t enough slots! Having a load factor 
greater than 1 means you have more items than slots in your array. 
Once the load factor starts to grow, you need to add more slots to your 
hash table. This is called resizing. For example, suppose you have this 
hash table that is getting pretty full.

You need to resize this hash table. First you create a new array that’s 
bigger. The rule of thumb is to make an array that is twice the size.
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Now you need to re-insert all of those items into this new hash table 
using the hash function:

This new table has a load factor of 3/8. Much better! With a lower load 
factor, you’ll have fewer collisions, and your table will perform better. A 
good rule of thumb is, resize when your load factor is greater than 0.7.
You might be thinking, “This resizing business takes a lot of time!” And 
you’re right. Resizing is expensive, and you don’t want to resize too 
often. But averaged out, hash tables take O(1) even with resizing.

A good hash function
A good hash function distributes values in the array evenly.

A bad hash function groups values together and produces a lot of 
collisions.

What is a good hash function? That’s something you’ll never have to 
worry about—old men (and women) with big beards sit in dark rooms 
and worry about that. If you’re really curious, look up the SHA function 
(there’s a short description of it in the last chapter). You could use that 
as your hash function.
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EXERCISES
It’s important for hash functions to have a good distribution. They 
should map items as broadly as possible. The worst case is a hash 
function that maps all items to the same slot in the hash table.
Suppose you have these four hash functions that work with strings:
a. Return “1” for all input.
b. Use the length of the string as the index.
c. Use the first character of the string as the index. So, all strings 

starting with a are hashed together, and so on.
d. Map every letter to a prime number: a = 2, b = 3, c = 5, d = 7,  

e = 11, and so on. For a string, the hash function is the sum of all  
the characters modulo the size of the hash. For example, if your  
hash size is 10, and the string is “bag”, the index is 3 + 2 + 17 %  
10 = 22 % 10 = 2.

For each of these examples, which hash functions would provide a good 
distribution? Assume a hash table size of 10 slots.
5.5 A phonebook where the keys are names and values are phone 

numbers. The names are as follows: Esther, Ben, Bob, and Dan.
5.6 A mapping from battery size to power. The sizes are A, AA, AAA, 

and AAAA.
5.7 A mapping from book titles to authors. The titles are Maus, Fun 

Home, and Watchmen.

Recap
You’ll almost never have to implement a hash table yourself. The 
programming language you use should provide an implementation for 
you. You can use Python’s hash tables and assume that you’ll get the 
average case performance: constant time.
Hash tables are a powerful data structure because they’re so fast and 
they let you model data in a different way. You might soon find that 
you’re using them all the time:
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• You can make a hash table by combining a hash function  
with an array.

• Collisions are bad. You need a hash function that  
minimizes collisions.

• Hash tables have really fast search, insert, and delete.

• Hash tables are good for modeling relationships from one  
item to another item.

• Once your load factor is greater than .07, it’s time to resize  
your hash table.

• Hash tables are used for caching data (for example, with  
a web server).

• Hash tables are great for catching duplicates.
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In this chapter

• You learn how to model a network using a new, 
abstract data structure: graphs.

• You learn breadth-first search, an algorithm you 
can run on graphs to answer questions like,  
“What’s the shortest path to go to X?”

• You learn about directed versus undirected graphs.

• You learn topological sort, a different kind of  
sorting algorithm that exposes dependencies 
between nodes.

6breadth-first
search

This chapter introduces graphs. First, I’ll talk about what graphs 
are (they don’t involve an X or Y axis). Then I’ll show you your first 
graph algorithm. It’s called breadth-first search (BFS).
Breadth-first search allows you to find the shortest distance 
between two things. But shortest distance can mean a lot of things! 
You can use breadth-first search to

• Write a checkers AI that calculates the fewest moves to victory
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• Write a spell checker (fewest edits from your misspelling to a real 
word—for example, READED -> READER is one edit)

• Find the doctor closest to you in your network
Graph algorithms are some of the most useful algorithms I know. Make 
sure you read the next few chapters carefully—these are algorithms 
you’ll be able to apply again and again.

Introduction to graphs

Suppose you’re in San Francisco, and you want to go from Twin Peaks 
to the Golden Gate Bridge. You want to get there by bus, with the 
minimum number of transfers. Here are your options.
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What’s your algorithm to find the path with the fewest steps?
Well, can you get there in one step? Here are all the places you can get 
to in one step.

The bridge isn’t highlighted; you can’t get there in one step. Can you get 
there in two steps?

Again, the bridge isn’t there, so you can’t get to the bridge in two steps. 
What about three steps?
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Aha! Now the Golden Gate Bridge shows up. So it takes three steps to 
get from Twin Peaks to the bridge using this route.

There are other routes that will get you to the bridge too, but they’re 
longer (four steps). The algorithm found that the shortest route to the 
bridge is three steps long. This type of problem is called a shortest-path 
problem. You’re always trying to find the shortest something. It could 
be the shortest route to your friend’s house. It could be the smallest 
number of moves to checkmate in a game of chess. The algorithm to 
solve a shortest-path problem is called breadth-first search.
To figure out how to get from Twin Peaks to the Golden Gate Bridge, 
there are two steps:
1. Model the problem as a graph.
2. Solve the problem using breadth-first search.

Next I’ll cover what graphs are. Then I’ll go into breadth-first search in 
more detail.

What is a graph?
A graph models a set of connections. For 
example, suppose you and your friends are 
playing poker, and you want to model who owes 
whom money. Here’s how you could say, “Alex 
owes Rama money.”



99Breadth-first search

The full graph could look something like this.

Alex owes Rama money, Tom owes Adit money, and so on. Each graph 
is made up of nodes and edges.

That’s all there is to it! Graphs are made up of nodes and edges. A node 
can be directly connected to many other nodes. Those nodes are called 
its neighbors. In this graph, Rama is Alex’s neighbor. Adit isn’t Alex’s 
neighbor, because they aren’t directly connected. But Adit is Rama’s and 
Tom’s neighbor.
Graphs are a way to model how different things are connected to one 
another. Now let’s see breadth-first search in action.

Breadth-first search
We looked at a search algorithm in chapter 1: binary search. Breadth-
first search is a different kind of search algorithm: one that runs on 
graphs. It can help answer two types of questions:

• Question type 1: Is there a path from node A to node B?

• Question type 2: What is the shortest path from node A to node B?

Graph of people who owe  
other people poker money
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You already saw breadth-first search once, when you calculated the 
shortest route from Twin Peaks to the Golden Gate Bridge. That was 
a question of type 2: “What is the shortest path?” Now let’s look at the 
algorithm in more detail. You’ll ask a question of type 1: “Is there a 
path?”

Suppose you’re the proud owner of a mango farm. You’re looking for a 
mango seller who can sell your mangoes. Are you connected to a mango 
seller on Facebook? Well, you can search through your friends.

This search is pretty straightforward.  
First, make a list of friends to search.
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Now, go to each person in the list and check whether that person sells 
mangoes.

Suppose none of your friends are mango sellers. Now you have to 
search through your friends’ friends.

Each time you search for someone from the list, add all of their friends 
to the list.
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This way, you not only search your friends, but you search their friends, 
too. Remember, the goal is to find one mango seller in your network. 
So if Alice isn’t a mango seller, you add her friends to the list, too. That 
means you’ll eventually search her friends—and then their friends, and 
so on. With this algorithm, you’ll search your entire network until you 
come across a mango seller. This algorithm is breadth-first search.

Finding the shortest path
As a recap, these are the two questions that breadth-first search can 
answer for you:

• Question type 1: Is there a path from node A to node B? (Is there a 
mango seller in your network?)

• Question type 2: What is the shortest path from node A to node B? 
(Who is the closest mango seller?)

You saw how to answer question 1; now let’s try to answer question 
2. Can you find the closest mango seller? For example, your friends 
are first-degree connections, and their friends are second-degree 
connections.
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You’d prefer a first-degree connection to a second-degree connection, 
and a second-degree connection to a third-degree connection, and so 
on. So you shouldn’t search any second-degree connections before you 
make sure you don’t have a first-degree connection who is a mango 
seller. Well, breadth-first search already does this! The way breadth-first 
search works, the search radiates out from the starting point. So you’ll 
check first-degree connections before second-degree connections. Pop 
quiz: who will be checked first, Claire or Anuj? Answer: Claire is a first-
degree connection, and Anuj is a second-degree connection. So Claire 
will be checked before Anuj.

Another way to see this is, first-degree connections 
are added to the search list before second-degree 
connections.
You just go down the list and check people to see 
whether each one is a mango seller. The first-degree 
connections will be searched before the second-
degree connections, so you’ll find the mango seller 
closest to you. Breadth-first search not only finds a 
path from A to B, it also finds the shortest path.

Notice that this only works if you search people in the same order in 
which they’re added. That is, if Claire was added to the list before Anuj, 
Claire needs to be searched before Anuj. What happens if you search 
Anuj before Claire, and they’re both mango sellers? Well, Anuj is a 
second-degree contact, and Claire is a first-degree contact. You end up 
with a mango seller who isn’t the closest to you in your network. So 
you need to search people in the order that they’re added. There’s a data 
structure for this: it’s called a queue.

Queues
A queue works exactly like it does in 
real life. Suppose you and your friend 
are queueing up at the bus stop. If you’re 
before him in the queue, you get on the 
bus first. A queue works the same way. 
Queues are similar to stacks. You can’t 
access random elements in the queue. 
Instead, there are two only operations, 
enqueue and dequeue.
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If you enqueue two items to the list, the first item you added will be 
dequeued before the second item. You can use this for your search list! 
People who are added to the list first will be dequeued and searched 
first.
The queue is called a FIFO data structure: First In, First Out. In 
contrast, a stack is a LIFO data structure: Last In, First Out.

Now that you know how a queue works, let’s implement breadth-first 
search!

EXERCISES
Run the breadth-first search algorithm on each of these graphs to find 
the solution.

6.1  Find the length of the shortest path  
from start to finish.

6.2 Find the length of the shortest path  
from “cab” to “bat”.
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Implementing the graph
First, you need to implement the graph in code. A graph 
consists of several nodes.
And each node is connected to neighboring nodes. 
How do you express a relationship like “you -> bob”? 
Luckily, you know a data structure that lets you express 
relationships: a hash table!
Remember, a hash table allows you to map a key to a 
value. In this case, you want to map a node to all of its 
neighbors.

Here’s how you’d write it in Python:

graph = {}
graph[“you”] = [“alice”, “bob”, “claire”]

Notice that “you” is mapped to an array. So graph[“you”] will give you 
an array of all the neighbors of “you”.
A graph is just a bunch of nodes and edges, so this is all you need to 
have a graph in Python. What about a bigger graph, like this one?
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Here it is as Python code:
graph = {}
graph[“you”] = [“alice”, “bob”, “claire”]
graph[“bob”] = [“anuj”, “peggy”]
graph[“alice”] = [“peggy”]
graph[“claire”] = [“thom”, “jonny”]
graph[“anuj”] = []
graph[“peggy”] = []
graph[“thom”] = []
graph[“jonny”] = []

Pop quiz: does it matter what order you add the key/value pairs in? 
Does it matter if you write

graph[“claire”] = [“thom”, “jonny”]
graph[“anuj”] = []

instead of

graph[“anuj”] = []
graph[“claire”] = [“thom”, “jonny”]

Think back to the previous chapter. Answer: It doesn’t matter. Hash 
tables have no ordering, so it doesn’t matter what order you add  
key/value pairs in.
Anuj, Peggy, Thom, and Jonny don’t have any neighbors. They have 
arrows pointing to them, but no arrows from them to someone else. 
This is called a directed graph—the relationship is only one way. So Anuj 
is Bob’s neighbor, but Bob isn’t Anuj’s neighbor. An undirected graph 
doesn’t have any arrows, and both nodes are each other’s neighbors. For 
example, both of these graphs are equal.
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Implementing the algorithm
To recap, here’s how the implementation will work.

Make a queue to start. In Python, you use the double-ended queue 
(deque) function for this:

from collections import deque        
search_queue = deque()        
search_queue += graph[“you”] 

Remember, graph[“you”] will give you a list of all your 
neighbors, like [“alice”, “bob”, “claire”]. Those all get 
added to the search queue.

Creates a new queue
Adds all of your neighbors to the search queue

Note

When updating queues, I 
use the terms enqueue and  
dequeue. You’ll also encoun-
ter the terms push and pop. 
Push is almost always the 
same thing as enqueue, and 
pop is almost always the 
same thing as dequeue.
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Let’s see the rest:
while search_queue:     
    person = search_queue.popleft()  
    if person_is_seller(person):   
        print person + “ is a mango seller!” 
        return True
    else:        
        search_queue += graph[person]           
return False

One final thing: you still need a person_is_seller function to tell you 
when someone is a mango seller. Here’s one:

def person_is_seller(name):
    return name[-1] == ‘m’

This function checks whether the person’s name ends with the letter m. 
If it does, they’re a mango seller. Kind of a silly way to do it, but it’ll do 
for this example. Now let’s see the breadth-first search in action.

 While the queue isn’t empty …
                                      … grabs the first person off the queue
                              Checks whether the person is a mango seller
                                                             Yes, they’re a mango seller.

                                             No, they aren’t. Add all of this  
person’s friends to the search queue.         If you reached here, no one in 

the queue was a mango seller.
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And so on. The algorithm will keep going until either

• A mango seller is found, or

• The queue becomes empty, in which case there is no mango seller.
Alice and Bob share a friend: Peggy. So Peggy will be added to the 
queue twice: once when you add Alice’s friends, and again when you 
add Bob’s friends. You’ll end up with two Peggys in the search queue.

But you only need to check Peggy once to see whether she’s a mango 
seller. If you check her twice, you’re doing unnecessary, extra work. So 
once you search a person, you should mark that person as searched and 
not search them again.
If you don’t do this, you could also end up in an infinite loop. Suppose 
the mango seller graph looked like this.

To start, the search queue contains all of your neighbors.

Now you check Peggy. She isn’t a mango seller, so you add all of her 
neighbors to the search queue.
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Next, you check yourself. You’re not a mango seller, so you add all of 
your neighbors to the search queue.

And so on. This will be an infinite loop, because the search queue will 
keep going from you to Peggy.

Before checking a person, it’s important to make sure 
they haven’t been checked already. To do that, you’ll 
keep a list of people you’ve already checked.

Here’s the final code for breadth-first search, taking that into account:

def search(name):
    search_queue = deque()
    search_queue += graph[name]   
    searched = [] 
    while search_queue:
        person = search_queue.popleft()  
        if not person in searched: 
            if person_is_seller(person):
                print person + “ is a mango seller!”
                return True
            else:
                search_queue += graph[person]   
                searched.append(person)
    return False

search(“you”)

This array is how you keep track of 
which people you’ve searched before.

Only search this person if you  
haven’t already searched them.

Marks this person as searched
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Try running this code yourself. Maybe try changing the person_is_
seller function to something more meaningful, and see if it prints 
what you expect.

Running time
If you search your entire network for a mango seller, that means you’ll 
follow each edge (remember, an edge is the arrow or connection from 
one person to another). So the running time is at least O(number of 
edges).
You also keep a queue of every person to search. Adding one person to 
the queue takes constant time: O(1). Doing this for every person will 
take O(number of people) total. Breadth-first search takes O(number of 
people + number of edges), and it’s more commonly written as O(V+E) 
(V for number of vertices, E for number of edges).

EXERCISE
Here’s a small graph of my morning routine.

It tells you that I can’t eat breakfast until I’ve brushed my teeth. So “eat 
breakfast” depends on “brush teeth”.
On the other hand, showering doesn’t depend on brushing my teeth, 
because I can shower before I brush my teeth. From this graph, you can 
make a list of the order in which I need to do my morning routine:
1. Wake up.
2. Shower.
3. Brush teeth.
4. Eat breakfast.
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Note that “shower” can be moved around, so this list is also valid:
1. Wake up.
2. Brush teeth.
3. Shower.
4. Eat breakfast.

6.3 For these three lists, mark whether each one is valid or invalid.

6.4 Here’s a larger graph. Make a valid list for this graph.

You could say that this list is sorted, in a way. If task A depends on 
task B, task A shows up later in the list. This is called a topological sort, 
and it’s a way to make an ordered list out of a graph. Suppose you’re 
planning a wedding and have a large graph full of tasks to do—and 
you’re not sure where to start. You could topologically sort the graph  
and get a list of tasks to do, in order.
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Suppose you have a family tree.

This is a graph, because you have nodes (the people) and edges.  
The edges point to the nodes’ parents. But all the edges go down—it 
wouldn’t make sense for a family tree to have an edge pointing back up! 
That would be meaningless—your dad can’t be your grandfather’s dad!

This is called a tree. A tree is a special type of graph, where no edges 
ever point back. 
6.5 Which of the following graphs are also trees?
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Recap

• Breadth-first search tells you if there’s a path from A to B.

• If there’s a path, breadth-first search will find the shortest path.

• If you have a problem like “find the shortest X,” try modeling your 
problem as a graph, and use breadth-first search to solve.

• A directed graph has arrows, and the relationship follows the 
direction of the arrow (rama -> adit means “rama owes adit money”).

• Undirected graphs don’t have arrows, and the relationship goes both 
ways (ross - rachel means “ross dated rachel and rachel dated ross”).

• Queues are FIFO (First In, First Out).

• Stacks are LIFO (Last In, First Out).

• You need to check people in the order they were added to the search 
list, so the search list needs to be a queue. Otherwise, you won’t get 
the shortest path.

• Once you check someone, make sure you don’t check them again. 
Otherwise, you might end up in an infinite loop.
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In this chapter

• We continue the discussion of graphs, and you 
learn about weighted graphs: a way to assign  
more or less weight to some edges.

• You learn Dijkstra’s algorithm, which lets you  
answer “What’s the shortest path to X?” for  
weighted graphs.

• You learn about cycles in graphs, where  
Dijkstra’s algorithm doesn’t work.

7Dijkstra’s 
algorithm
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In the last chapter, you figured out a way to get from point A to point B.

It’s not necessarily the fastest path. It’s the shortest path, because it has 
the least number of segments (three segments). But suppose you add 
travel times to those segments. Now you see that there’s a faster path.

You used breadth-first search in the last chapter. Breadth-first search 
will find you the path with the fewest segments (the first graph shown 
here). What if you want the fastest path instead (the second graph)? You 
can do that fastest with a different algorithm called Dijkstra’s algorithm. 

Working with Dijkstra’s algorithm
Let’s see how it works with this graph.

Each segment has a travel time in minutes. You’ll use Dijkstra’s 
algorithm to go from start to finish in the shortest possible time.  
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If you ran breadth-first search on this graph, you’d get this  
shortest path.

But that path takes 7 minutes. Let’s see if you can find a path that takes 
less time! There are four steps to Dijkstra’s algorithm:
1. Find the “cheapest” node. This is the node you can get to in the least 

amount of time.
2. Update the costs of the neighbors of this node. I’ll explain what I 

mean by this shortly.
3. Repeat until you’ve done this for every node in the graph.
4. Calculate the final path.

Step 1: Find the cheapest node. You’re standing at the start, wondering 
if you should go to node A or node B. How long does it take to get to 
each node?

It takes 6 minutes to get to node A and 2 minutes to get to node B.  
The rest of the nodes, you don’t know yet.
Because you don’t know how long it takes to get  
to the finish yet, you put down infinity (you’ll see 
why soon). Node B is the closest node … it’s 2 
minutes away.
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Step 2: Calculate how long it takes to get to all of node B’s neighbors by 
following an edge from B.

Hey, you just found a shorter path to node A! It used to take 6 minutes 
to get to node A.

But if you go through node B, there’s a path that only takes 5 minutes!

When you find a shorter path for a neighbor of B, update its cost. In this 
case, you found 

• A shorter path to A (down from 6 minutes to 5 minutes)

• A shorter path to the finish (down from infinity to 7 minutes)
Step 3: Repeat!
Step 1 again:  Find the node that takes the least amount of time  
to get to. You’re done with node B, so node A has the next smallest  
time estimate.
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Step 2 again: Update the costs for node A’s neighbors.

Woo, it takes 6 minutes to get to the finish now!
You’ve run Dijkstra’s algorithm for every node (you don’t need to run it 
for the finish node). At this point, you know

• It takes 2 minutes to get to node B.

• It takes 5 minutes to get to node A.

• It takes 6 minutes to get to the finish.

I’ll save the last step, calculating the final path, for the next section. For 
now, I’ll just show you what the final path is.

Breadth-first search wouldn’t have found this as the shortest path, 
because it has three segments. And there’s a way to get from the start to 
the finish in two segments.
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In the last chapter, you used breadth-first search to find the shortest 
path between two points. Back then, “shortest path” meant the path 
with the fewest segments. But in Dijkstra’s algorithm, you assign a 
number or weight to each segment. Then Dijkstra’s algorithm finds the 
path with the smallest total weight.

To recap, Dijkstra’s algorithm has four steps:
1. Find the cheapest node. This is the node you can get to in the least 

amount of time.
2. Check whether there’s a cheaper path to the neighbors of this node. 

If so, update their costs.
3. Repeat until you’ve done this for every node in the graph.
4. Calculate the final path. (Coming up in the next section!)

Terminology
I want to show you some more examples of Dijkstra’s algorithm in 
action. But first let me clarify some terminology.
When you work with Dijkstra’s algorithm, each edge in the graph has a 
number associated with it. These are called weights.

A graph with weights is called a weighted graph. A graph without 
weights is called an unweighted graph.



121Terminology

To calculate the shortest path in an unweighted graph, use breadth-first 
search. To calculate the shortest path in a weighted graph, use Dijkstra’s 
algorithm. Graphs can also have cycles. A cycle looks like this.

It means you can start at a node, travel around, and end up at the same 
node. Suppose you’re trying to find the shortest path in this graph that 
has a cycle.

Would it make sense to follow the cycle? Well, you can use the path that 
avoids the cycle.

Or you can follow the cycle.
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You end up at node A either way, but the cycle adds more weight. You 
could even follow the cycle twice if you wanted.

But every time you follow the cycle, you’re just adding 8 to the total 
weight. So following the cycle will never give you the shortest path. 
Finally, remember our conversation about directed versus undirected 
graphs from chapter 6?

An undirected graph means that both nodes point to each other. That’s 
a cycle!

With an undirected graph, each edge adds another cycle.  
Dijkstra’s algorithm only works with directed acyclic graphs,  
called DAGs for short.

Trading for a piano
Enough terminology, let’s look at another example! This is Rama.
Rama is trying to trade a music book for a piano.
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“I’ll give you this poster for your book,” says Alex. “It’s a poster of 
my favorite band, Destroyer. Or I’ll give you this rare LP of Rick 
Astley for your book and $5 more.” “Ooh, I’ve heard that LP has a 
really great song,” says Amy. “I’ll trade you my guitar or drum set 
for the poster or the LP.”
“I’ve been meaning to get into guitar!” exclaims Beethoven. “Hey, 
I’ll trade you my piano for either of Amy’s things.”
Perfect! With a little bit of money, Rama can trade his way from a piano 
book to a real piano. Now he just needs to figure out how to spend the 
least amount of money to make those trades. Let’s graph out what he’s 
been offered.

In this graph, the nodes are all the items Rama can trade for. The 
weights on the edges are the amount of money he would have to pay 
to make the trade. So he can trade the poster for the guitar for $30, or 
trade the LP for the guitar for $15. How is Rama going to figure out 
the path from the book to the piano where he spends the least dough? 
Dijkstra’s algorithm to the rescue! Remember, Dijkstra’s algorithm has 
four steps. In this example, you’ll do all four steps, so you’ll calculate 
the final path at the end, too.

Before you start, you need some 
setup. Make a table of the cost for 
each node. The cost of a node is how 
expensive it is to get to.
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You’ll keep updating this table as the algorithm goes on. To calculate the 
final path, you also need a parent column on this table.

I’ll show you how this column works soon. Let’s start the algorithm.
Step 1: Find the cheapest node. In this case, the poster is the cheapest 
trade, at $0. Is there a cheaper way to trade for the poster? This is a 
really important point, so think about it. Can you see a series of trades 
that will get Rama the poster for less than $0? Read on when you’re 
ready. Answer: No. Because the poster is the cheapest node Rama can get 
to, there’s no way to make it any cheaper. Here’s a different way to look at 
it. Suppose you’re traveling from home to work.

If you take the path toward the school, that takes 2 minutes. If you take 
the path toward the park, that takes 6 minutes. Is there any way you can 
take the path toward the park, and end up at the school, in less than 
2 minutes? It’s impossible, because it takes longer than 2 minutes just 
to get to the park. On the other hand, can you find a faster path to the 
park? Yup.
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This is the key idea behind Dijkstra’s algorithm: Look at the cheapest 
node on your graph. There is no cheaper way to get to this node!
Back to the music example. The poster is the cheapest trade.
Step 2: Figure out how long it takes to get to its neighbors (the cost).

You have prices for the bass guitar and the drum set in the table. Their 
value was set when you went through the poster, so the poster gets set 
as their parent. That means, to get to the bass guitar, you follow the edge 
from the poster, and the same for the drums.

Step 1 again: The LP is the next cheapest node at $5.
Step 2 again: Update the values of all of its neighbors.

Hey, you updated the price of both the drums and the guitar! That 
means it’s cheaper to get to the drums and guitar by following the edge 
from the LP. So you set the LP as the new parent for both instruments.
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The bass guitar is the next cheapest item. Update its neighbors.

Ok, you finally have a price for the piano, by trading the guitar for the 
piano. So you set the guitar as the parent. Finally, the last node, the 
drum set.

Rama can get the piano even cheaper by trading the drum set for the 
piano instead. So the cheapest set of trades will cost Rama $35.
Now, as I promised, you need to figure out the path. So far, you know 
that the shortest path costs $35, but how do you figure out the path? To 
start with, look at the parent for piano.

The piano has drums as its parent. That means Rama trades the drums 
for the piano. So you follow this edge.
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Let’s see how you’d follow the edges. Piano has drums as its parent.

And drums has the LP as its parent.

So Rama will trade the LP for the drums. And of course, he’ll trade the 
book for the LP. By following the parents backward, you now have the 
complete path.

Here’s the series of trades Rama needs to make.
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So far, I’ve been using the term shortest path pretty literally: calculating 
the shortest path between two locations or between two people. I  
hope this example showed you that the shortest path doesn’t have to  
be about physical distance. It can be about minimizing something. In 
this case, Rama wanted to minimize the amount of money he spent. 
Thanks, Dijkstra!

Negative-weight edges
In the trading example, Alex offered to trade the book for 
two items.
Suppose Sarah offers to trade the LP for the poster, and 
she’ll give Rama an additional $7. It doesn’t cost Rama 
anything to make this trade; instead, he gets $7 back.  
How would you show this on the graph?

The edge from the LP to the poster has a negative weight! Rama  
gets $7 back if he makes that trade. Now Rama has two ways to get  
to the poster.
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So it makes sense to do the second trade—Rama gets $2 back that way! 
Now, if you remember, Rama can trade the poster for the drums. There 
are two paths he could take.

The second path costs him $2 less, so he should take that path, right? 
Well, guess what? If you run Dijkstra’s algorithm on this graph, Rama 
will take the wrong path. He’ll take the longer path. You can’t use 
Dijkstra’s algorithm if you have negative-weight edges. Negative-weight 
edges break the algorithm. Let’s see what happens when you run 
Dijkstra’s algorithm on this. First, make the table of costs.

Next, find the lowest-cost node, and update the costs for its neighbors. 
In this case, the poster is the lowest-cost node. So, according to 
Dijkstra’s algorithm, there is no cheaper way to get to the poster than 
paying $0 (you know that’s wrong!). Anyway, let’s update the costs for 
its neighbors.

Ok, the drums have a cost of $35 now. 



130 Chapter 7  I  Dijkstra’s algorithm

Let’s get the next-cheapest node that hasn’t already been processed.

Update the costs for its neighbors.

You already processed the poster node, but you’re updating the cost for 
it. This is a big red flag. Once you process a node, it means there’s no 
cheaper way to get to that node. But you just found a cheaper way to 
the poster! Drums doesn’t have any neighbors, so that’s the end of the 
algorithm. Here are the final costs.

It costs $35 to get to the drums. You know that there’s a path that costs 
only $33, but Dijkstra’s algorithm didn’t find it. Dijkstra’s algorithm 
assumed that because you were processing the poster node, there was 
no faster way to get to that node. That assumption only works if you 
have no negative-weight edges. So you can’t use negative-weight edges 
with Dijkstra’s algorithm. If you want to find the shortest path in a graph 
that has negative-weight edges, there’s an algorithm for that! It’s called 
the Bellman-Ford algorithm. Bellman-Ford is out of the scope of this 
book, but you can find some great explanations online.
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Implementation
Let’s see how to implement Dijkstra’s algorithm in code. Here’s the 
graph I’ll use for the example.

To code this example, you’ll need three hash tables.

You’ll update the costs and parents hash tables as the algorithm 
progresses. First, you need to implement the graph. You’ll use a hash 
table like you did in chapter 6: 
graph = {}

In the last chapter, you stored all the neighbors of a node in the hash 
table, like this:
graph[“you”] = [“alice”, “bob”, “claire”]

But this time, you need to store the neighbors and the cost for getting to 
that neighbor. For example, Start has two neighbors, A and B.



132 Chapter 7  I  Dijkstra’s algorithm

How do you represent the weights of those edges? Why not just use 
another hash table?

graph[“start”] = {}
graph[“start”][“a”] = 6

graph[“start”][“b”] = 2

So graph[“start”] is a hash table. You can get all the neighbors for 
Start like this:

>>> print graph[“start”].keys()
[“a”, “b”]

There’s an edge from Start to A and an edge from Start to B. What if you 
want to find the weights of those edges?

>>> print graph[“start”][“a”]
2
>>> print graph[“start”][“b”]
6

Let’s add the rest of the nodes and their neighbors to the graph:

graph[“a”] = {}
graph[“a”][“fin”] = 1

graph[“b”] = {}
graph[“b”][“a”] = 3
graph[“b”][“fin”] = 5

graph[“fin”] = {}  The finish node doesn’t have any neighbors.
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The full graph hash table looks like this.

Next you need a hash table to store the costs for each node.
The cost of a node is how long it takes to get to that 
node from the start. You know it takes 2 minutes from 
Start to node B. You know it takes 6 minutes to get to 
node A (although you may find a path that takes less 
time). You don’t know how long it takes to get to the 
finish. If you don’t know the cost yet, you put down 
infinity. Can you represent infinity in Python? Turns 
out, you can:

infinity = float(“inf”)

Here’s the code to make the costs table:

infinity = float(“inf”)
costs = {}
costs[“a”] = 6
costs[“b”] = 2
costs[“fin”] = infinity

You also need another hash table for the parents:
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Here’s the code to make the hash table for the parents:
parents = {}
parents[“a”] = “start”
parents[“b”] = “start”
parents[“fin”] = None

Finally, you need an array to keep track of all the nodes you’ve already 
processed, because you don’t need to process a node more than once:

processed = []

That’s all the setup. Now let’s look at the algorithm.

I’ll show you the code first and then walk through it. Here’s the code:

node = find_lowest_cost_node(costs) 
while node is not None: 
    cost = costs[node]
    neighbors = graph[node]  
    for n in neighbors.keys(): 
        new_cost = cost + neighbors[n] 
        if costs[n] > new_cost:
            costs[n] = new_cost
            parents[n] = node    
    processed.append(node)        
    node = find_lowest_cost_node(costs) 

That’s Dijkstra’s algorithm in Python! I’ll show you the code for the 
function later. First, let’s see this find_lowest_cost_node algorithm 
code in action.

                                               Find the lowest-cost node  
                             that you haven’t processed yet.

 If you’ve processed all the nodes, this while loop is done.

                 Go through all the neighbors of this node.
                   If it’s cheaper to get to this neighbor
                   by going through this node …
                      … update the cost for this node.
                 This node becomes the new parent for this neighbor.
       Mark the node as processed.
                                       Find the next node to process, and loop.
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Find the node with the lowest cost.

Get the cost and neighbors of that node.

Loop through the neighbors.

Each node has a cost. The cost is how long it takes to get to that node 
from the start. Here, you’re calculating how long it would take to get to 
node A if you went Start > node B > node A, instead of Start > node A.

Let’s compare those costs.
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You found a shorter path to node A! Update the cost.

The new path goes through node B, so set B as the new parent.

Ok, you’re back at the top of the loop. The next neighbor for is the 
Finish node.

How long does it take to get to the finish if you go through node B?

It takes 7 minutes. The previous cost was infinity minutes, and  
7 minutes is less than that.



137Implementation

Set the new cost and the new parent for the Finish node.

Ok, you updated the costs for all the neighbors of node B. Mark it as 
processed.

Find the next node to process.

Get the cost and neighbors for node A.
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Node A only has one neighbor: the Finish node.

Currently it takes 7 minutes to get to the Finish node. How long would 
it take to get there if you went through node A?

It’s faster to get to Finish from node A! Let’s update the cost  
and parent.
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          If it’s the lowest cost  
          so far and hasn’t been  

  processed yet …

def find_lowest_cost_node(costs):
    lowest_cost = float(“inf”)
    lowest_cost_node = None
    for node in costs:  Go through each node.
        cost = costs[node]
        if cost < lowest_cost and node not in processed:                                     
            lowest_cost = cost  … set it as the new lowest-cost node.
            lowest_cost_node = node
    return lowest_cost_node

Once you’ve processed all the nodes, the algorithm is over. I hope 
the walkthrough helped you understand the algorithm a little better. 
Finding the lowest-cost node is pretty easy with the find_lowest_
cost_node function. Here it is in code:

EXERCISE
7.1 In each of these graphs, what is the weight of the shortest path from 

start to finish?
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Recap

• Breadth-first search is used to calculate the shortest path for  
an unweighted graph.

• Dijkstra’s algorithm is used to calculate the shortest path for  
a weighted graph.

• Dijkstra’s algorithm works when all the weights are positive.

• If you have negative weights, use the Bellman-Ford algorithm.
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greedy 
algorithms

In this chapter

• You learn how to tackle the impossible:  
problems that have no fast algorithmic solution 
(NP-complete problems).

• You learn how to identify such problems when you 
see them, so you don’t waste time trying to find a 
fast algorithm for them.

• You learn about approximation algorithms, which 
you can use to find an approximate solution to an 
NP-complete problem quickly.

• You learn about the greedy strategy, a very simple 
problem-solving strategy.

8
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The classroom scheduling problem
Suppose you have a classroom and want to hold as many classes 
here as possible. You get a list of classes.

You can’t hold all of these classes in there, because some of them 
overlap.

You want to hold as many classes as possible in this classroom. How 
do you pick what set of classes to hold, so that you get the biggest set of 
classes possible?
Sounds like a hard problem, right? Actually, the algorithm is so easy, it 
might surprise you. Here’s how it works:
1. Pick the class that ends the soonest. This is the first class you’ll hold 

in this classroom.
2. Now, you have to pick a class that starts after the first class.  

Again, pick the class that ends the soonest. This is the second  
class you’ll hold.
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Keep doing this, and you’ll end up with the answer! Let’s try it out. Art 
ends the soonest, at 10:00 a.m., so that’s one of the classes you pick.

Now you need the next class that starts after 10:00 a.m. and ends  
the soonest.

English is out because it conflicts with Art, but Math works.
Finally, CS conflicts with Math, but Music works.

So these are the three classes you’ll hold in this classroom.
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A lot of people tell me that this algorithm seems easy. It’s too obvious, 
so it must be wrong. But that’s the beauty of greedy algorithms: they’re 
easy! A greedy algorithm is simple: at each step, pick the optimal move. 
In this case, each time you pick a class, you pick the class that ends the 
soonest. In technical terms: at each step you pick the locally optimal 
solution, and in the end you’re left with the globally optimal solution. 
Believe it or not, this simple algorithm finds the optimal solution to this 
scheduling problem!
Obviously, greedy algorithms don’t always work. But they’re simple to 
write! Let’s look at another example.

The knapsack problem
Suppose you’re a greedy thief. You’re in a store with a 
knapsack, and there are all these items you can steal.  
But you can only take what you can fit in your knapsack. 
The knapsack can hold 35 pounds.

You’re trying to maximize the value of the items you put 
in your knapsack. What algorithm do you use?
Again, the greedy strategy is pretty simple:
1.    Pick the most expensive thing that will fit in your 

knapsack.
2.    Pick the next most expensive thing that will fit in 

your knapsack. And so on.
Except this time, it doesn’t work! For example, suppose there are three 
items you can steal.



145The knapsack problem

Your knapsack can hold 35 pounds of items. The stereo system is 
the most expensive, so you steal that. Now you don’t have space for 
anything else.

You got $3,000 worth of goods. But wait! If you’d picked the laptop and 
the guitar instead, you could have had $3,500 worth of loot!

Clearly, the greedy strategy doesn’t give you the optimal solution here. 
But it gets you pretty close. In the next chapter, I’ll explain how to 
calculate the correct solution. But if you’re a thief in a shopping center, 
you don’t care about perfect. “Pretty good” is good enough. 
Here’s the takeaway from this second example: sometimes, perfect is the 
enemy of good. Sometimes all you need is an algorithm that solves the 
problem pretty well. And that’s where greedy algorithms shine, because 
they’re simple to write and usually get pretty close.

EXERCISES
8.1 You work for a furniture company, and you have to ship furniture 

all over the country. You need to pack your truck with boxes. All 
the boxes are of different sizes, and you’re trying to maximize the 
space you use in each truck. How would you pick boxes to maximize 
space? Come up with a greedy strategy. Will that give you the 
optimal solution? 

8.2 You’re going to Europe, and you have seven days to see everything 
you can. You assign a point value to each item (how much you want 
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to see it) and estimate how long it takes. How can you maximize the 
point total (seeing all the things you really want to see) during your 
stay? Come up with a greedy strategy. Will that give you the optimal 
solution? 

Let’s look at one last example. This is an example where greedy 
algorithms are absolutely necessary.

The set-covering problem
Suppose you’re starting a radio show. You want to 
reach listeners in all 50 states. You have to decide what 
stations to play on to reach all those listeners. It costs 
money to be on each station, so you’re trying to minimize the 
number of stations you play on. You have a list of stations.

Each station covers a region, and  
there’s overlap.
How do you figure out the smallest set of 
stations you can play on to cover all 50 
states? Sounds easy, doesn’t it? Turns out  
it’s extremely hard. Here’s how to do it:

1.   List every possible subset of stations. 
This is called the power set. There are  
2^n possible subsets.
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2.   From these, pick the set with the smallest number of stations that 
covers all 50 states. 

The problem is, it takes a long time to calculate every possible subset 
of stations. It takes O(2^n) time, because there are 2^n stations. It’s 
possible to do if you have a small set of 5 to 10 stations. But with all 
the examples here, think about what will happen if you have a lot of 
items. It takes much longer if you have more stations. Suppose you can 
calculate 10 subsets per second.
There’s no algorithm that solves it fast enough! What can you do?

Approximation algorithms
Greedy algorithms to the rescue! Here’s a greedy algorithm that comes 
pretty close:
1. Pick the station that covers the most states that haven’t been covered 

yet. It’s OK if the station covers some states that have been covered 
already.

2. Repeat until all the states are covered.

This is called an approximation algorithm. When calculating the exact 
solution will take too much time, an approximation algorithm will 
work. Approximation algorithms are judged by

• How fast they are

• How close they are to the optimal solution

Greedy algorithms are a good choice because not only are they simple 
to come up with, but that simplicity means they usually run fast, too. 
In this case, the greedy algorithm runs in O(n^2) time, where n is the 
number of radio stations.
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Let’s see how this problem looks in code.

Code for setup

For this example, I’m going to use a subset of the states and the stations 
to keep things simple.
First, make a list of the states you want to cover:
states_needed = set([“mt”, “wa”, “or”, “id”, “nv”, “ut”, 

“ca”, “az”])  You pass an array in, and it gets converted to a set.

I used a set for this. A set is like a list, except that each item can show up 
only once in a set. Sets can’t have duplicates. For example, suppose you 
had this list: 
>>> arr = [1, 2, 2, 3, 3, 3]

And you converted it to a set:
>>> set(arr)
set([1, 2, 3])

1, 2, and 3 all show up just once in a set.

You also need the list of stations that you’re choosing from. I chose to 
use a hash for this:

stations = {}
stations[“kone”] = set([“id”, “nv”, “ut”])
stations[“ktwo”] = set([“wa”, “id”, “mt”])
stations[“kthree”] = set([“or”, “nv”, “ca”])
stations[“kfour”] = set([“nv”, “ut”])
stations[“kfive”] = set([“ca”, “az”])

The keys are station names, and the values are the states they cover. 
So in this example, the kone station covers Idaho, Nevada, and Utah. 
All the values are sets, too. Making everything a set will make your life 
easier, as you’ll see soon.
Finally, you need something to hold the final set of stations you’ll use:
final_stations = set()
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Calculating the answer

Now you need to calculate what stations you’ll use. Take a look 
at the image at right, and see if you can predict what stations you 
should use.
There can be more than one correct solution. You need to go 
through every station and pick the one that covers the most 
uncovered states. I’ll call this best_station:
best_station = None
states_covered = set()
for station, states_for_station in stations.items():

states_covered is a set of all the states this station covers that 
haven’t been covered yet. The for loop allows you to loop over 
every station to see which one is the best station. Let’s look at the body 
of the for loop:

covered = states_needed & states_for_station      
if len(covered) > len(states_covered):
  best_station = station
  states_covered = covered

There’s a funny-looking line here:

covered = states_needed & states_for_station

What’s going on?

Sets

Suppose you have a set of fruits.

You also have a set of vegetables.

When you have two sets, you can do some fun things with them.

  New syntax! This is  
called a set intersection.
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Here are some things you can do with sets.

• A set union means “combine both sets.”

• A set intersection means “find the items that show up in both sets”  
(in this case, just the tomato).

• A set difference means “subtract the items in one set from the items  
in the other set.”

For example:

>>> fruits = set([“avocado”, “tomato”, “banana”])
>>> vegetables = set([“beets”, “carrots”, “tomato”])
>>> fruits | vegetables  This is a set union.
set([“avocado”, “beets”, “carrots”, “tomato”, “banana”])
>>> fruits & vegetables  This is a set intersection.
set([“tomato”])
>>> fruits – vegetables  This is a set difference.
set([“avocado”, “banana”])
>>> vegetables – fruits  What do you think this will do?
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To recap:

• Sets are like lists, except sets can’t have duplicates.

• You can do some interesting operations on sets, like union, 
intersection, and difference.

Back to the code

Let’s get back to the original example.
This is a set intersection:

covered = states_needed & states_for_station

covered is a set of states that were in both states_needed and 
states_for_station. So covered is the set of uncovered states 
that this station covers! Next you check whether this station 
covers more states than the current best_station:

if len(covered) > len(states_covered):
  best_station = station
  states_covered = covered

If so, this station is the new best_station. Finally, after the for 
loop is over, you add best_station to the final list of stations:

final_stations.add(best_station)

You also need to update states_needed. Because this station covers 
some states, those states aren’t needed anymore:
states_needed -= states_covered

And you loop until states_needed is empty. Here’s the full code for  
the loop:

while states_needed:
  best_station = None
  states_covered = set()
  for station, states in stations.items():
    covered = states_needed & states
    if len(covered) > len(states_covered):
      best_station = station
      states_covered = covered

states_needed -= states_covered
final_stations.add(best_station)
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Finally, you can print final_stations, and you should see this:
>>> print final_stations
set([‘ktwo’, ‘kthree’, ‘kone’, ‘kfive’])

Is that what you expected? Instead of stations 1, 2, 3, and 5, you could 
have chosen stations 2, 3, 4, and 5. Let’s compare the run time of the 
greedy algorithm to the exact algorithm.

EXERCISES
For each of these algorithms, say whether it’s a greedy algorithm or not.
8.3 Quicksort
8.4 Breadth-first search
8.5 Dijkstra’s algorithm

NP-complete problems
To solve the set-covering problem, you had to calculate every  
possible set.
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Maybe you were reminded of the traveling salesperson problem from 
chapter 1. In this problem, a salesperson has to visit five different cities.

And he’s trying to figure out the shortest route that will take him to all 
five cities. To find the shortest route, you first have to calculate every 
possible route.

How many routes do you have to calculate for five cities?

Traveling salesperson, step by step
Let’s start small. Suppose you only have two cities. There are two routes 
to choose from.
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You may be wondering, “In the traveling salesperson problem, is there 
a specific city you need to start from?” For example, let’s say I’m the 
traveling salesperson. I live in San Francisco, and I need to go to four 
other cities. San Francisco would be my start city.
But sometimes the start city isn’t set. Suppose you’re FedEx, trying 
to deliver a package to the Bay Area. The package is being flown in 
from Chicago to one of 50 FedEx locations in the Bay Area. Then 
that package will go on a truck that will travel to different locations 
delivering packages. Which location should it get flown to? Here the 
start location is unknown. It’s up to you to compute the optimal path 
and start location for the traveling salesperson.
The running time for both versions is the same. But it’s an easier 
example if there’s no defined start city, so I’ll go with that version.
Two cities = two possible routes.

3 cities

Now suppose you add one more city. How many possible routes  
are there?
If you start at Berkeley, you have two more cities to visit.

Same route or different?
You may think this should be the same route. After all, isn’t SF > Marin 
the same distance as Marin > SF? Not necessarily. Some cities (like San 
Francisco) have a lot of one-way streets, so you can’t go back the way you 
came. You might also have to go 1 or 2 miles out of the way to find an on-
ramp to a highway. So these two routes aren’t necessarily the same.
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There are six total routes, two for each city you can start at.

So three cities = six possible routes.

4 cities

Let’s add another city, Fremont. Now suppose you start at Fremont.
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There are six possible routes starting from Fremont. And hey! They 
look a lot like the six routes you calculated earlier, when you had only 
three cities. Except now all the routes have an additional city, Fremont! 
There’s a pattern here. Suppose you have four cities, and you pick a start 
city, Fremont. There are three cities left. And you know that if there are 
three cities, there are six different routes for getting between those cities. 
If you start at Fremont, there are six possible routes. You could also start 
at one of the other cities.

Four possible start cities, with six possible routes for each start city =  
4 * 6 = 24 possible routes.
Do you see a pattern? Every time you add a new city, you’re increasing 
the number of routes you have to calculate.

How many possible routes are there for six cities? If you guessed 720, 
you’re right. 5,040 for 7 cities, 40,320 for 8 cities.
This is called the factorial function (remember reading about this in 
chapter 3?). So 5! = 120. Suppose you have 10 cities. How many possible 
routes are there? 10! = 3,628,800. You have to calculate over 3 million 
possible routes for 10 cities. As you can see, the number of possible 
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routes becomes big very fast! This is why it’s impossible to compute the 
“correct” solution for the traveling-salesperson problem if you have a 
large number of cities.
The traveling-salesperson problem and the set-covering problem both 
have something in common: you calculate every possible solution and 
pick the smallest/shortest one. Both of these problems are NP-complete.

Here’s the short explanation of NP-completeness: some problems are 
famously hard to solve. The traveling salesperson and the set-covering 
problem are two examples. A lot of smart people think that it’s not 
possible to write an algorithm that will solve these problems quickly.

Approximating
What’s a good approximation algorithm for the traveling salesperson? 
Something simple that finds a short path. See if you can come up with an 
answer before reading on.

Here’s how I would do it: arbitrarily pick a start city. Then, each time the  
salesperson has to pick the next city to visit, they pick the closest unvisited 
city. Suppose they start in Marin.

Total distance: 71 miles. Maybe it’s not the shortest path, but it’s still  
pretty short.
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How do you tell if a problem is NP-complete?
Jonah is picking players for his fantasy football team. He has a list of 
abilities he wants: good quarterback, good running back, good in rain, 
good under pressure, and so on. He has a list of players, where each 
player fulfills some abilities.

Jonah needs a team that fulfills all his abilities, and the team size 
is limited. “Wait a second,” Jonah realizes. “This is a set-covering 
problem!”

Jonah can use the same approximation algorithm to create his team:
1. Find the player who fulfills the most abilities that haven’t been 

fulfilled yet. 
2. Repeat until the team fulfills all abilities (or you run out of space  

on the team).

NP-complete problems show up everywhere! It’s nice to know if the 
problem you’re trying to solve is NP-complete. At that point, you can 
stop trying to solve it perfectly, and solve it using an approximation 
algorithm instead. But it’s hard to tell if a problem you’re working on is 
NP-complete. Usually there’s a very small difference between a problem 
that’s easy to solve and an NP-complete problem. For example, in the 
previous chapters, I talked a lot about shortest paths. You know how to 
calculate the shortest way to get from point A to point B.
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But if you want to find the shortest path that connects several points, 
that’s the traveling-salesperson problem, which is NP-complete. The 
short answer: there’s no easy way to tell if the problem you’re working 
on is NP-complete. Here are some giveaways:

• Your algorithm runs quickly with a handful of items but really slows 
down with more items.

• “All combinations of X” usually point to an NP-complete problem.

• Do you have to calculate “every possible version” of X because you 
can’t break it down into smaller sub-problems? Might be  
NP-complete.

• If your problem involves a sequence (such as a sequence of cities, like 
traveling salesperson), and it’s hard to solve, it might be NP-complete.

• If your problem involves a set (like a set of radio stations) and it’s hard 
to solve, it might be NP-complete.

• Can you restate your problem as the set-covering problem or the 
traveling-salesperson problem? Then your problem is definitely  
NP-complete.

EXERCISES
8.6 A postman needs to deliver to 20 homes. He needs to find the 

shortest route that goes to all 20 homes. Is this an NP-complete 
problem? 

8.7 Finding the largest clique in a set of people (a clique is a set of people 
who all know each other). Is this an NP-complete problem?

8.8 You’re making a map of the USA, and you need to color adjacent 
states with different colors. You have to find the minimum number 
of colors you need so that no two adjacent states are the same color. 
Is this an NP-complete problem?
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Recap

• Greedy algorithms optimize locally, hoping to end up with a global 
optimum. 

• NP-complete problems have no known fast solution. 

• If you have an NP-complete problem, your best bet is to use an 
approximation algorithm. 

• Greedy algorithms are easy to write and fast to run, so they make 
good approximation algorithms.
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In this chapter

• You learn dynamic programming, a  
technique to solve a hard problem by  
breaking it up into subproblems and  
solving those subproblems first.

• Using examples, you learn to how to come up  
with a dynamic programming solution to a  
new problem.

dynamic
programming 9

The knapsack problem
Let’s revisit the knapsack problem from chapter 8. 
You’re a thief with a knapsack that can carry 4 lb 
of goods.
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You have three items that you can put into the knapsack.

What items should you steal so that you steal the maximum money’s 
worth of goods? 

The simple solution 
The simplest algorithm is this: you try every possible set of goods and 
find the set that gives you the most value.

This works, but it’s really slow. For 3 items, you have to calculate 8 
possible sets. For 4 items, you have to calculate 16 sets. With every 
item you add, the number of sets you have to calculate doubles! This 
algorithm takes O(2^n) time, which is very, very slow.
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That’s impractical for any reasonable number of goods. In chapter 8, 
you saw how to calculate an approximate solution. That solution will be 
close to the optimal solution, but it may not be the optimal solution.
So how do you calculate the optimal solution?

Dynamic programming
Answer: With dynamic programming! Let’s see how the dynamic-
programming algorithm works here. Dynamic programming starts by 
solving subproblems and builds up to solving the big problem.
For the knapsack problem, you’ll start by solving the problem for 
smaller knapsacks (or “sub-knapsacks”) and then work up to solving 
the original problem.

Dynamic programming is a hard concept, so don’t worry if you don’t get it 
right away. We’re going to look at a lot of examples.
I’ll start by showing you the algorithm in action first. After you’ve seen 
it in action once, you’ll have a lot of questions! I’ll do my best to address 
every question. 
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Every dynamic-programming algorithm starts with a grid. Here’s a grid 
for the knapsack problem.

The rows of the grid are the items, and the columns are knapsack 
weights from 1 lb to 4 lb. You need all of those columns because they 
will help you calculate the values of the sub-knapsacks.
The grid starts out empty. You’re going to fill in each cell of the grid. 
Once the grid is filled in, you’ll have your answer to this problem! 
Please follow along. Make your own grid, and we’ll fill it out together. 

The guitar row

I’ll show you the exact formula for calculating this grid later. Let’s do a 
walkthrough first. Start with the first row.

This is the guitar row, which means you’re trying to fit the guitar into 
the knapsack. At each cell, there’s a simple decision: do you steal the 
guitar or not? Remember, you’re trying to find the set of items to steal 
that will give you the most value. 
The first cell has a knapsack of capacity 1 lb. The guitar is also 1 lb, 
which means it fits into the knapsack! So the value of this cell is $1,500, 
and it contains a guitar.
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Let’s start filling in the grid. 

Like this, each cell in the grid will contain a list of all the items that fit 
into the knapsack at that point. 
Let’s look at the next cell. Here you have a knapsack of capacity 2 lb. 
Well, the guitar will definitely fit in there!

The same for the rest of the cells in this row. Remember, this is the first 
row, so you have only the guitar to choose from. You’re pretending that 
the other two items aren’t available to steal right now.

At this point, you’re probably confused. Why are you doing this for 
knapsacks with a capacity of 1 lb, 2 lb, and so on, when the problem 
talks about a 4 lb knapsack? Remember how I told you that dynamic 
programming starts with a small problem and builds up to the big 
problem? You’re solving subproblems here that will help you to solve 
the big problem. Read on, and things will become clearer.
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At this point, your grid should look like this.

Remember, you’re trying to maximize the value of the knapsack. 
This row represents the current best guess for this max. So right now, 
according to this row, if you had a knapsack of capacity 4 lb, the max 
value you could put in there would be $1,500.

You know that’s not the final solution. As we go through the algorithm, 
you’ll refine your estimate. 

The stereo row

Let’s do the next row. This one is for the stereo. Now that you’re on the 
second row, you can steal the stereo or the guitar. At every row, you can 
steal the item at that row or the items in the rows above it. So you can’t 
choose to steal the laptop right now, but you can steal the stereo and/or 
the guitar. Let’s start with the first cell, a knapsack of capacity 1 lb. The 
current max value you can fit into a knapsack of 1 lb is $1,500.
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Should you steal the stereo or not? 
You have a knapsack of capacity 1 lb. Will the stereo fit in there? Nope, 
it’s too heavy! Because you can’t fit the stereo, $1,500 remains the max 
guess for a 1 lb knapsack.

Same thing for the next two cells. These knapsacks have a capacity of  
2 lb and 3 lb. The old max value for both was $1,500.

The stereo still doesn’t fit, so your guesses remain unchanged.
What if you have a knapsack of capacity 4 lb? Aha: the stereo finally fits! 
The old max value was $1,500, but if you put the stereo in there instead, 
the value is $3,000! Let’s take the stereo.
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You just updated your estimate! If you have a 4 lb knapsack, you can 
fit at least $3,000 worth of goods in it. You can see from the grid that 
you’re incrementally updating your estimate.

The laptop row

Let’s do the same thing with the laptop! The laptop weighs 3 lb, so it 
won’t fit into a 1 lb or a 2 lb knapsack. The estimate for the first two cells 
stays at $1,500.

At 3 lb, the old estimate was $1,500. But you can choose the laptop 
instead, and that’s worth $2,000. So the new max estimate is $2,000!

At 4 lb, things get really interesting. This is an important part. The 
current estimate is $3,000. You can put the laptop in the knapsack, but 
it’s only worth $2,000.
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Hmm, that’s not as good as the old estimate. But wait! The laptop 
weighs only 3 lb, so you have 1 lb free! You could put something in  
this 1 lb.

What’s the maximum value you can fit into 1 lb of space? Well, you’ve 
been calculating it all along.

According to the last best estimate, you can fit the guitar into that 1 lb 
space, and that’s worth $1,500. So the real comparison is as follows.

You might have been wondering why you were calculating max values 
for smaller knapsacks. I hope now it makes sense! When you have  
space left over, you can use the answers to those subproblems to figure 
out what will fit in that space. It’s better to take the laptop + the guitar 
for $3,500. 
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The final grid looks like this.

There’s the answer: the maximum value that will fit in the knapsack is 
$3,500, made up of a guitar and a laptop!
Maybe you think that I used a different formula to calculate the value 
of that last cell. That’s because I skipped some unnecessary complexity 
when filling in the values of the earlier cells. Each cell’s value gets 
calculated with the same formula. Here it is.

You can use this formula with every cell in this grid, and you should 
end up with the same grid I did. Remember how I talked about solving 
subproblems? You combined the solutions to two subproblems to solve 
the bigger problem.
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Knapsack problem FAQ
Maybe this still feels like magic. This section answers some common 
questions. 

What happens if you add an item?
Suppose you realize there’s a fourth item you can steal that you didn’t 
notice before! You can also steal an iPhone.
Do you have to recalculate everything to account for this new item? 
Nope. Remember, dynamic programming keeps progressively 
building on your estimate. So far, these are the max values.

That means for a 4 lb knapsack, you can steal $3,500 worth of goods. 
You thought that was the final max value. But let’s add a row for  
the iPhone.
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Turns out you have a new max value! Try to fill in this new row before 
reading on. 
Let’s start with the first cell. The iPhone fits into the 1 lb knapsack. 
The old max was $1,500, but the iPhone is worth $2,000. Let’s take the 
iPhone instead.

In the next cell, you can fit the iPhone and the guitar.

For cell 3, you can’t do better than take the iPhone and the guitar again, 
so leave it as is.
For the last cell, things get interesting. The current max is $3,500. You 
can steal the iPhone instead, and you have 3 lb of space left over.
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Those 3 lb are worth $2,000! $2,000 from the iPhone + $2,000 from the 
old subproblem: that’s $4,000. A new max!
Here’s the new final grid.

Question: Would the value of a column ever go down? Is this possible?

Think of an answer before reading on. 
Answer: No. At every iteration, you’re storing the current max estimate. 
The estimate can never get worse than it was before!

EXERCISE
9.1 Suppose you can steal another item: an MP3 player. It weighs 1 lb 

and is worth $1,000. Should you steal it?
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What happens if you change the order of the rows?
Does the answer change? Suppose you fill the rows in this order: stereo, 
laptop, guitar. What does the grid look like? Fill out the grid for yourself 
before moving on.
Here’s what the grid looks like.

The answer doesn’t change. The order of the rows doesn’t matter.

Can you fill in the grid column-wise instead  
of row-wise?
Try it for yourself! For this problem, it doesn’t make a difference. It 
could make a difference for other problems.

What happens if you add a smaller item?
Suppose you can steal a necklace. It weighs 0.5 lb, and it’s worth $1,000. 
So far, your grid assumes that all weights are integers. Now you decide 
to steal the necklace. You have 3.5 lb left over. What’s the max value  
you can fit in 3.5 lb? You don’t know! You only calculated values for  
1 lb, 2 lb, 3 lb, and 4 lb knapsacks. You need to know the value of a  
3.5 lb knapsack. 
Because of the necklace, you have to account for finer granularity, so the 
grid has to change.
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Can you steal fractions of an item?
Suppose you’re a thief in a grocery store. You can steal bags of lentils 
and rice. If a whole bag doesn’t fit, you can open it and take as much as 
you can carry. So now it’s not all or nothing—you can take a fraction of 
an item. How do you handle this using dynamic programming?
Answer: You can’t. With the dynamic-programming solution, you 
either take the item or not. There’s no way for it to figure out that you 
should take half an item.
But this case is also easily solved using a greedy algorithm! First, take as 
much as you can of the most valuable item. When that runs out, take as 
much as you can of the next most valuable item, and so on.
For example, suppose you have these items to choose from.

Quinoa is more expensive per pound than anything else. So, take all 
the quinoa you can carry! If that fills your knapsack, that’s the best 
you can do.
If the quinoa runs out and you still have space in your knapsack, 
take the next most valuable item, and so on. 

Optimizing your travel itinerary
Suppose you’re going to London for a nice vacation. You have two days 
there and a lot of things you want to do. You can’t do everything, so you 
make a list.
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For each thing you want to see, you write down how long it will take 
and rate how much you want to see it. Can you figure out what you 
should see, based on this list? 
It’s the knapsack problem again! Instead of a knapsack, you have a 
limited amount of time. And instead of stereos and laptops, you have a 
list of places you want to go. Draw the dynamic-programming grid for 
this list before moving on.
Here’s what the grid looks like.

Did you get it right? Fill in the grid. What places should you end up 
seeing? Here’s the answer.
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Handling items that depend on each other
Suppose you want to go to Paris, so you add a couple of items on  
the list.

These places take a lot of time, because first you have to travel from 
London to Paris. That takes half a day. If you want to do all three items, 
it will take four and a half days.
Wait, that’s not right. You don’t have to travel to Paris for each item. 
Once you’re in Paris, each item should only take a day. So it should be 
one day per item + half a day of travel = 3.5 days, not 4.5 days.
If you put the Eiffel Tower in your knapsack, then the Louvre becomes 
“cheaper”—it will only cost you a day instead of 1.5 days. How do you 
model this in dynamic programming?
You can’t. Dynamic programming is powerful because it can solve 
subproblems and use those answers to solve the big problem. Dynamic 
programming only works when each subproblem is discrete—when it 
doesn’t depend on other subproblems. That means there’s no way to 
account for Paris using the dynamic-programming algorithm. 

Is it possible that the solution will require  
more than two sub-knapsacks?
It’s possible that the best solution involves stealing more than two items. 
The way the algorithm is set up, you’re combining two knapsacks at 
most—you’ll never have more than two sub-knapsacks. But it’s possible 
for those sub-knapsacks to have their own sub-knapsacks.
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Is it possible that the best solution doesn’t  
fill the knapsack completely?
Yes. Suppose you could also steal a diamond.
This is a big diamond: it weighs 3.5 pounds. It’s worth a million 
dollars, way more than anything else. You should definitely steal it! 
But there’s half a pound of space left, and nothing will fit in  
that space.

EXERCISE
9.2 Suppose you’re going camping. You have a knapsack that will hold  

6 lb, and you can take the following items. Each has a value, and the 
higher the value, the more important the item is:

• Water, 3 lb, 10

• Book, 1 lb, 3

• Food, 2 lb, 9

• Jacket, 2 lb, 5

• Camera, 1 lb, 6

What’s the optimal set of items to take on your camping trip?

Longest common substring
You’ve seen one dynamic programming problem so far. What are  
the takeaways?

• Dynamic programming is useful when you’re trying to optimize 
something given a constraint. In the knapsack problem, you had to 
maximize the value of the goods you stole, constrained by the size of 
the knapsack. 

• You can use dynamic programming when the problem can be broken 
into discrete subproblems, and they don’t depend on each other.
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It can be hard to come up with a dynamic-programming solution. That’s 
what we’ll focus on in this section. Some general tips follow:

• Every dynamic-programming solution involves a grid.

• The values in the cells are usually what you’re trying to optimize.  
For the knapsack problem, the values were the value of the goods.

• Each cell is a subproblem, so think about how you can divide  
your problem into subproblems. That will help you figure out what 
the axes are.

Let’s look at another example. Suppose you run dictionary.com. 
Someone types in a word, and you give them the definition.
But if someone misspells a word, you want to be able to guess 
what word they meant. Alex is searching for fish, but he 
accidentally put in hish. That’s not a word in your dictionary,  
but you have a list of words that are similar.

(This is a toy example, so you’ll limit your list to two words. In reality, 
this list would probably be thousands of words.) 
Alex typed hish. Which word did Alex mean to type: fish or vista? 

Making the grid
What does the grid for this problem look like? You need to answer these 
questions:

• What are the values of the cells?

• How do you divide this problem into subproblems?

• What are the axes of the grid?
In dynamic programming, you’re trying to maximize something. In this 
case, you’re trying to find the longest substring that two words have in 
common. What substring do hish and fish have in common? How about 
hish and vista? That’s what you want to calculate.
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Remember, the values for the cells are usually what you’re trying to 
optimize. In this case, the values will probably be a number: the length 
of the longest substring that the two strings have in common.
How do you divide this problem into subproblems? You could compare 
substrings. Instead of comparing hish and fish, you could compare his 
and fis first. Each cell will contain the length of the longest substring 
that two substrings have in common. This also gives you a clue that the 
axes will probably be the two words. So the grid probably looks like this.

If this seems like black magic to you, don’t worry. This is hard stuff—
that’s why I’m teaching it so late in the book! Later, I’ll give you an 
exercise so you can practice dynamic programming yourself.

Filling in the grid
Now you have a good idea of what the grid should look like. What’s the 
formula for filling in each cell of the grid? You can cheat a little, because 
you already know what the solution should be—hish and fish have a 
substring of length 3 in common: ish.
But that still doesn’t tell you the formula to use. Computer scientists 
sometimes joke about using the Feynman algorithm. The Feynman 
algorithm is named after the famous physicist Richard Feynman, and  
it works like this: 
1. Write down the problem. 
2. Think real hard. 
3. Write down the solution.
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Computer scientists are a fun bunch!
The truth is, there’s no easy way to calculate the formula here. You 
have to experiment and try to find something that works. Sometimes 
algorithms aren’t an exact recipe. They’re a framework that you build 
your idea on top of.
Try to come up with a solution to this problem yourself. I’ll give you a 
hint—part of the grid looks like this.

What are the other values? Remember that each cell is the value of a 
subproblem. Why does cell (3, 3) have a value of 2? Why does cell (3, 4) 
have a value of 0? 
Read on after you’ve tried to come up with a formula yourself. Even if 
you don’t get it right, my explanation will make a lot more sense.
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The solution
Here’s the final grid.

Here’s my formula for filling in each cell.

Here’s how the formula looks in pseudocode:

if word_a[i] == word_b[j]:  The letters match.
  cell[i][j] = cell[i-1][j-1] + 1
else:  The letters don’t match.
  cell[i][j] = 0 
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Here’s the grid for hish vs. vista.

One thing to note: for this problem, the final solution may not be in 
the last cell! For the knapsack problem, this last cell always had the 
final solution. But for the longest common substring, the solution is the 
largest number in the grid—and it may not be the last cell.
Let’s go back to the original question: which string has more in 
common with hish? hish and fish have a substring of three letters in 
common. hish and vista have a substring of two letters in common. 
Alex probably meant to type fish.

Longest common subsequence
Suppose Alex accidentally searched for fosh. Which word did he mean: 
fish or fort? 
Let’s compare them using the longest-common-substring formula.
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They’re both the same: two letters! But fosh is closer to fish.

You’re comparing the longest common substring, but you really need 
to compare the longest common subsequence: the number of letters in 
a sequence that the two words have in common. How do you calculate 
the longest common subsequence? 
Here’s the partial grid for fish and fosh.

Can you figure out the formula for this grid? The longest common 
subsequence is very similar to the longest common substring, and 
the formulas are pretty similar, too. Try to solve it yourself—I give the 
answer next.

Longest common subsequence—solution
Here’s the final grid.
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Here’s my formula for filling in each cell.

And here it is in pseudocode:

if word_a[i] == word_b[j]:  The letters match.
  cell[i][j] = cell[i-1][j-1] + 1
else:  The letters don’t match.
  cell[i][j] = max(cell[i-1][j], cell[i][j-1])

Whew—you did it! This is definitely one of the toughest chapters in the 
book. So is dynamic programming ever really used? Yes:

• Biologists use the longest common subsequence to find similarities 
in DNA strands. They can use this to tell how similar two animals or 
two diseases are. The longest common subsequence is being used to 
find a cure for multiple sclerosis.

• Have you ever used diff (like git diff)? Diff tells you the differences 
between two files, and it uses dynamic programming to do so.

• We talked about string similarity. Levenshtein distance measures 
how similar two strings are, and it uses dynamic programming. 
Levenshtein distance is used for everything from spell-check to 
figuring out whether a user is uploading copyrighted data. 
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• Have you ever used an app that does word wrap, like Microsoft Word? 
How does it figure out where to wrap so that the line length stays 
consistent? Dynamic programming!

EXERCISE
9.3 Draw and fill in the grid to calculate the longest common substring 

between blue and clues.

Recap

• Dynamic programming is useful when you’re trying to optimize 
something given a constraint. 

• You can use dynamic programming when the problem can be  
broken into discrete subproblems.

• Every dynamic-programming solution involves a grid.

• The values in the cells are usually what you’re trying to optimize.

• Each cell is a subproblem, so think about how you can divide your 
problem into subproblems.

• There’s no single formula for calculating a dynamic-programming 
solution.
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In this chapter

• You learn to build a classification system using  
the k-nearest neighbors algorithm.

• You learn about feature extraction.

• You learn about regression: predicting a number, 
like the value of a stock tomorrow, or how much  
a user will enjoy a movie.

• You learn about the use cases and limitations  
of k-nearest neighbors.

k-nearest 
neighbors 10

Classifying oranges vs. grapefruit
Look at this fruit. Is it an orange or a grapefruit? 
Well, I know that grapefruits are generally bigger 
and redder. 



188 Chapter 10  I  k-nearest neighbors

My thought process is something like this: I have a graph in my mind.

Generally speaking, the bigger, redder fruit are grapefruits. This fruit  
is big and red, so it’s probably a grapefruit. But what if you get a fruit 
like this?

How would you classify this fruit? One way is to look at the neighbors of 
this spot. Take a look at the three closest neighbors of this spot.
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More neighbors are oranges than grapefruit. So this fruit is probably an 
orange. Congratulations: You just used the k-nearest neighbors (KNN) 
algorithm for classification! The whole algorithm is pretty simple.

The KNN algorithm is simple but useful! If you’re trying to classify 
something, you might want to try KNN first. Let’s look at a more  
real-world example. 

Building a recommendations system
Suppose you’re Netflix, and you want to build a movie 
recommendations system for your users. On a high level, this  
is similar to the grapefruit problem! 
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You can plot every user on a graph.

These users are plotted by similarity, so users with similar taste are 
plotted closer together. Suppose you want to recommend movies for 
Priyanka. Find the five users closest to her.

Justin, JC, Joey, Lance, and Chris all have similar taste in movies. So 
whatever movies they like, Priyanka will probably like too! 
Once you have this graph, building a recommendations system is easy. 
If Justin likes a movie, recommend it to Priyanka.
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But there’s still a big piece missing. You graphed the users by similarity. 
How do you figure out how similar two users are? 

Feature extraction
In the grapefruit example, you compared fruit based on how  
big they are and how red they are. Size and color are the features  
you’re comparing. Now suppose you have three fruit. You can extract 
the features.

Then you can graph the three fruit.

From the graph, you can tell visually that fruits A and B are similar. 
Let’s measure how close they are. To find the distance between two 
points, you use the Pythagorean formula.
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Here’s the distance between A and B, for example.

The distance between A and B is 1. You can find the rest of the 
distances, too.

The distance formula confirms what you saw visually: fruits A and B  
are similar. 
Suppose you’re comparing Netflix users, instead. You need some 
way to graph the users. So, you need to convert each user to a set of 
coordinates, just as you did for fruit.
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Once you can graph users, you can measure the distance between them. 
Here’s how you can convert users into a set of numbers. When users 
sign up for Netflix, have them rate some categories of movies based on 
how much they like those categories. For each user, you now have a set 
of ratings!

Priyanka and Justin like Romance and hate Horror. Morpheus likes 
Action but hates Romance (he hates when a good action movie gets 
ruined by a cheesy romantic scene). Remember how in oranges versus 
grapefruit, each fruit was represented by a set of two numbers? Here, 
each user is represented by a set of five numbers.

A mathematician would say, instead of calculating the distance in two 
dimensions, you’re now calculating the distance in five dimensions. But 
the distance formula remains the same.
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It just involves a set of five numbers instead of a set of two numbers.
The distance formula is flexible: you could have a set of a million 
numbers and still use the same old distance formula to find the 
distance. Maybe you’re wondering, “What does distance mean when 
you have five numbers?” The distance tells you how similar those sets of 
numbers are.

Here’s the distance between Priyanka and Justin.
Priyanka and Justin are pretty similar. What’s the difference between 
Priyanka and Morpheus? Calculate the distance before moving on.
Did you get it right? Priyanka and Morpheus are 24 apart. The distance 
tells you that Priyanka’s tastes are more like Justin’s than Morpheus’s.
Great! Now recommending movies to Priyanka is easy: if Justin likes a 
movie, recommend it to Priyanka, and vice versa. You just built a movie 
recommendations system!
If you’re a Netflix user, Netflix will keep telling you, “Please rate more 
movies. The more movies you rate, the better your recommendations 
will be.” Now you know why. The more movies you rate, the more 
accurately Netflix can see what other users you’re similar to.
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EXERCISES
10.1   In the Netflix example, you calculated the distance between two 

different users using the distance formula. But not all users rate 
movies the same way. Suppose you have two users, Yogi and Pinky, 
who have the same taste in movies. But Yogi rates any movie he 
likes as a 5, whereas Pinky is choosier and reserves the 5s for 
only the best. They’re well matched, but according to the distance 
algorithm, they aren’t neighbors. How would you take their 
different rating strategies into account? 

10.2   Suppose Netflix nominates a group of “influencers.” For example, 
Quentin Tarantino and Wes Anderson are influencers on Netflix, 
so their ratings count for more than a normal user’s. How would 
you change the recommendations system so it’s biased toward the 
ratings of influencers?

Regression
Suppose you want to do more than just recommend a movie: you want 
to guess how Priyanka will rate this movie. Take the five people closest 
to her.
By the way, I keep talking about the closest five people. There’s nothing 

special about the number 5: you could do the closest 2, or 10, or 10,000. 
That’s why the algorithm is called k-nearest neighbors and not five-
nearest neighbors! 
Suppose you’re trying to guess a rating for Pitch Perfect. Well, how did 
Justin, JC, Joey, Lance, and Chris rate it?
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You could take the average of their ratings and get 4.2 stars.  
That’s called regression. These are the two basic things you’ll do  
with KNN—classification and regression:

• Classification = categorization into a group

• Regression = predicting a response (like a number)

Regression is very useful. Suppose you run a small bakery in Berkeley, 
and you make fresh bread every day. You’re trying to predict how many 
loaves to make for today. You have a set of features:

• Weather on a scale of 1 to 5 (1 = bad, 5 = great).

• Weekend or holiday? (1 if it’s a weekend or a holiday, 0 otherwise.)

• Is there a game on? (1 if yes, 0 if no.)

And you know how many loaves of bread you’ve sold in the  
past for different sets of features.
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Today is a weekend day with good weather. Based on the data you just 
saw, how many loaves will you sell? Let’s use KNN, where K = 4. First, 
figure out the four nearest neighbors for this point.

Here are the distances. A, B, D, and E are the closest.

Take an average of the loaves sold on those days, and you get 218.75. 
That’s how many loaves you should make for today!

Cosine similarity
So far, you’ve been using the distance formula to compare the distance 
between two users. Is this the best formula to use? A common one used 
in practice is cosine similarity. Suppose two users are similar, but one of 
them is more conservative in their ratings. They both loved Manmohan 
Desai’s Amar Akbar Anthony. Paul rated it 5 stars, but Rowan rated it 4 
stars. If you keep using the distance formula, these two users might not be 
each other’s neighbors, even though they have similar taste. 

Cosine similarity doesn’t measure the distance between two vectors. 
Instead, it compares the angles of the two vectors. It’s better at dealing 
with cases like this. Cosine similarity is out of the scope of this book, but 
look it up if you use KNN!
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Picking good features
To figure out recommendations, you had users rate 
categories of movies. What if you had them rate pictures 
of cats instead? Then you’d find users who rated those 
pictures similarly. This would probably be a worse recommendations 
engine, because the “features” don’t have a lot to do with taste in 
movies!
Or suppose you ask users to rate movies so you can give them 
recommendations—but you only ask them to rate Toy Story, Toy Story 
2, and Toy Story 3. This won’t tell you a lot about the users’ movie tastes!
When you’re working with KNN, it’s really important to pick the right 
features to compare against. Picking the right features means

• Features that directly correlate to the movies you’re trying to 
recommend

• Features that don’t have a bias (for example, if you ask the users to 
only rate comedy movies, that doesn’t tell you whether they like 
action movies)

Do you think ratings are a good way to recommend movies? Maybe I 
rated The Wire more highly than House Hunters, but I actually spend 
more time watching House Hunters. How would you improve this 
Netflix recommendations system?
Going back to the bakery: can you think of two good and two bad 
features you could have picked for the bakery? Maybe you need to make 
more loaves after you advertise in the paper. Or maybe you need to 
make more loaves on Mondays. 
There’s no one right answer when it comes to picking good features. You 
have to think about all the different things you need to consider.

EXERCISE
10.3   Netflix has millions of users. The earlier example looked at the five 

closest neighbors for building the recommendations system. Is this 
too low? Too high? 
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Introduction to machine learning
KNN is a really useful algorithm, and it’s your introduction to 
the magical world of machine learning! Machine learning is all 
about making your computer more intelligent. You already saw 
one example of machine learning: building a recommendations 
system. Let’s look at some other examples.

OCR
OCR stands for optical character recognition. It means you can take a 
photo of a page of text, and your computer will automatically read the 
text for you. Google uses OCR to digitize books. How does OCR work? 
For example, consider this number.

How would you automatically figure out what number this is? You can 
use KNN for this: 
1. Go through a lot of images of numbers, and extract features of those 

numbers. 
2. When you get a new image, extract the features of that image, and 

see what its nearest neighbors are! 

It’s the same problem as oranges versus grapefruit. Generally speaking, 
OCR algorithms measure lines, points, and curves.

Then, when you get a new character, you can extract the same features 
from it.
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Feature extraction is a lot more complicated in OCR than the 
fruit example. But it’s important to understand that even complex 
technologies build on simple ideas, like KNN. You could use the same 
ideas for speech recognition or face recognition. When you upload a 
photo to Facebook, sometimes it’s smart enough to tag people in the 
photo automatically. That’s machine learning in action! 
The first step of OCR, where you go through images of numbers and 
extract features, is called training. Most machine-learning algorithms 
have a training step: before your computer can do the task, it must  
be trained. The next example involves spam filters, and it has a  
training step. 

Building a spam filter
Spam filters use another simple algorithm called the Naive Bayes 
classifier. First, you train your Naive Bayes classifier on some data.

Suppose you get an email with the subject “collect your million dollars 
now!” Is it spam? You can break this sentence into words. Then, for 
each word, see what the probability is for that word to show up in a 
spam email. For example, in this very simple model, the word million 
only appears in spam emails. Naive Bayes figures out the probability 
that something is likely to be spam. It has applications similar to KNN. 
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For example, you could use Naive Bayes to categorize fruit: you have 
a fruit that’s big and red. What’s the probability that it’s a grapefruit? 
It’s another simple algorithm that’s fairly effective. We love those 
algorithms!

Predicting the stock market
Here’s something that’s hard to do with machine learning: really 
predicting whether the stock market will go up or down. How do 
you pick good features in a stock market? Suppose you say that if the 
stock went up yesterday, it will go up today. Is that a good feature? Or 
suppose you say that the stock will always go down in May. Will that 
work? There’s no guaranteed way to use past numbers to predict future 
performance. Predicting the future is hard, and it’s almost impossible 
when there are so many variables involved.

Recap
I hope this gives you an idea of all the different things you can do with 
KNN and with machine learning! Machine learning is an interesting 
field that you can go pretty deep into if you decide to:

• KNN is used for classification and regression and involves looking  
at the k-nearest neighbors.

• Classification = categorization into a group.

• Regression = predicting a response (like a number).
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• Feature extraction means converting an item (like a fruit or a user) 
into a list of numbers that can be compared.

• Picking good features is an important part of a successful KNN 
algorithm.
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In this chapter

• You get a brief overview of 10 algorithms  
that weren’t covered in this book, and why  
they’re useful.

• You get pointers on what to read next,  
depending on what your interests are.

where to 
go next 11

Trees
Let’s go back to the binary search example. 
When a user logs in to Facebook, Facebook 
has to look through a big array to see if the 
username exists. We said the fastest way to 
search through this array is to run binary 
search. But there’s a problem: every time a new 
user signs up, you insert their username into 
the array. Then you have to re-sort the array, 
because binary search only works with sorted 
arrays. Wouldn’t it be nice if you could insert 
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the username into the right slot in the array right away, so you don’t 
have to sort the array afterward? That’s the idea behind the binary search 
tree data structure.
A binary search tree looks like this.

For every node, the nodes to its left are smaller in value, and the nodes 
to the right are larger in value.

Suppose you’re searching for Maggie. You start at the root node.
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Maggie comes after David, so go toward the right.

Maggie comes before Manning, so go to the left.

You found Maggie! It’s almost like running a binary search! Searching 
for an element in a binary search tree takes O(log n) time on average 
and O(n) time in the worst case. Searching a sorted array takes O(log n) 
time in the worst case, so you might think a sorted array is better. But a 
binary search tree is a lot faster for insertions and deletions on average.

Binary search trees have some downsides too: for one thing, you  
don’t get random access. You can’t say, “Give me the fifth element of  
this tree.” Those performance times are also on average and rely on  
the tree being balanced. Suppose you have an imbalanced tree like the 
one shown next.
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See how it’s leaning to the right? This tree doesn’t have very good 
performance, because it isn’t balanced. There are special binary search 
trees that balance themselves. One example is the red-black tree. 
So when are binary search trees used? B-trees, a special type of binary 
tree, are commonly used to store data in databases. 
If you’re interested in databases or more-advanced data structures, 
check these out:

• B-trees

• Red-black trees

• Heaps

• Splay trees

Inverted indexes
Here’s a very simplified version of how a search engine works. Suppose 
you have three web pages with this simple content.
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Let’s build a hash table from this content.
The keys of the hash table are the words, and the values tell 
you what pages each word appears on. Now suppose a user 
searches for hi. Let’s see what pages hi shows up on.

Aha: It appears on pages A and B. Let’s show the user those pages as 
the result. Or suppose the user searches for there. Well, you know that 
it shows up on pages A and C. Pretty easy, huh? This is a useful data 
structure: a hash that maps words to places where they appear. This 
data structure is called an inverted index, and it’s commonly used to 
build search engines. If you’re interested in search, this is a good place 
to start.

The Fourier transform
The Fourier transform is one of those rare algorithms: brilliant, 
elegant, and with a million use cases. The best analogy for the Fourier 
transform comes from Better Explained (a great website that explains 
math simply): given a smoothie, the Fourier transform will tell you the 
ingredients in the smoothie.1 Or, to put it another way, given a song, the 
transform can separate it into individual frequencies.
It turns out that this simple idea has a lot of use cases. For example, if 
you can separate a song into frequencies, you can boost the ones you 
care about. You could boost the bass and hide the treble. The Fourier 
transform is great for processing signals. You can also use it to compress 
music. First you break an audio file down into its ingredient notes. The 
Fourier transform tells you exactly how much each note contributes 
to the overall song. So you can just get rid of the notes that aren’t 
important. That’s how the MP3 format works!
Music isn’t the only type of digital signal. The JPG format is another 
compressed format, and it works the same way. People use the Fourier 
transform to try to predict upcoming earthquakes and analyze DNA. 

1 Kalid, “An Interactive Guide to the Fourier Transform,” Better Explained, http://mng.bx/874X.
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You can use it to build an app like Shazam, which guesses what song is 
playing. The Fourier transform has a lot of uses. Chances are high that 
you’ll run into it!

Parallel algorithms
The next three topics are about scalability and working with a lot of 
data. Back in the day, computers kept getting faster and faster. If you 
wanted to make your algorithm faster, you could wait a few months, 
and the computers themselves would become faster. But we’re near the 
end of that period. Instead, laptops and computers ship with multiple 
cores. To make your algorithms faster, you need to change them to run 
in parallel across all the cores at once!
Here’s a simple example. The best you can do with a sorting algorithm is 
roughly O(n log n). It’s well known that you can’t sort an array in O(n) 
time—unless you use a parallel algorithm! There’s a parallel version of 
quicksort that will sort an array in O(n) time.
Parallel algorithms are hard to design. And it’s also hard to make sure 
they work correctly and to figure out what type of speed boost you’ll 
see. One thing is for sure—the time gains aren’t linear. So if you have 
two cores in your laptop instead of one, that almost never means your 
algorithm will magically run twice as fast. There are a couple of reasons 
for this:

• Overhead of managing the parallelism—Suppose you have to sort 
an array of 1,000 items. How do you divide this task among the two 
cores? Do you give each core 500 items to sort and then merge the 
two sorted arrays into one big sorted array? Merging the two arrays 
takes time.

• Load balancing—Suppose you have 10 tasks to do, so you give each 
core 5 tasks. But core A gets all the easy tasks, so it’s done in 10 
seconds, whereas core B gets all the hard tasks, so it takes a minute. 
That means core A was sitting idle for 50 seconds while core B was 
doing all the work! How do you distribute the work evenly so both 
cores are working equally hard?

If you’re interested in the theoretical side of performance and scalability, 
parallel algorithms might be for you! 
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MapReduce
There’s a special type of parallel algorithm that is becoming increasingly 
popular: the distributed algorithm. It’s fine to run a parallel algorithm 
on your laptop if you need two to four cores, but what if you need 
hundreds of cores? Then you can write your algorithm to run across 
multiple machines. The MapReduce algorithm is a popular distributed 
algorithm. You can use it through the popular open source tool  
Apache Hadoop.

Why are distributed algorithms useful?
Suppose you have a table with billions or trillions of rows, and you 
want to run a complicated SQL query on it. You can’t run it on MySQL, 
because it struggles after a few billion rows. Use MapReduce through 
Hadoop!
Or suppose you have to process a long list of jobs. Each job takes 10 
seconds to process, and you need to process 1 million jobs like this. If 
you do this on one machine, it will take you months! If you could run it 
across 100 machines, you might be done in a few days.
Distributed algorithms are great when you have a lot of work to do  
and want to speed up the time required to do it. MapReduce in 
particular is built up from two simple ideas: the map function and the 
reduce function. 

The map function
The map function is simple: it takes an array and applies the same 
function to each item in the array. For example, here we’re doubling 
every item in the array:

>>> arr1 = [1, 2, 3, 4, 5]
>>> arr2 = map(lambda x: 2 * x, arr1)
[2, 4, 6, 8, 10]
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arr2 now contains[2, 4, 6, 8, 10]—every element in arr1 was 
doubled! Doubling an element is pretty fast. But suppose you apply a 
function that takes more time to process. Look at this pseudocode:

>>> arr1 = # A list of URLs
>>> arr2 = map(download_page, arr1)

Here you have a list of URLs, and you want to download each page and 
store the contents in arr2. This could take a couple of seconds for each 
URL. If you had 1,000 URLs, this might take a couple of hours!
Wouldn’t it be great if you had 100 machines, and map could 
automatically spread out the work across all of them? Then you would 
be downloading 100 pages at a time, and the work would go a lot faster! 
This is the idea behind the “map” in MapReduce.

The reduce function
The reduce function confuses people sometimes. The idea is that you 
“reduce” a whole list of items down to one item. With map, you go from 
one array to another.

With reduce, you transform an array to a single item.

Here’s an example:

>>> arr1 = [1, 2, 3, 4, 5]
>>> reduce(lambda x,y: x+y, arr1)
15
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In this case, you sum up all the elements in the array: 1 + 2 + 3 + 4 
+ 5 = 15! I won’t explain reduce in more detail here, because there are 
plenty of tutorials online.
MapReduce uses these two simple concepts to run queries about data 
across multiple machines. When you have a large dataset (billions 
of rows), MapReduce can give you an answer in minutes where a 
traditional database might take hours. 

Bloom filters and HyperLogLog
Suppose you’re running Reddit. When someone posts a link, you want 
to see if it’s been posted before. Stories that haven’t been posted before 
are considered more valuable. So you need to figure out whether this 
link has been posted before. 
Or suppose you’re Google, and you’re crawling web pages. You only 
want to crawl a web page if you haven’t crawled it already. So you need 
to figure out whether this page has been crawled before.
Or suppose you’re running bit.ly, which is a URL shortener. You don’t 
want to redirect users to malicious websites. You have a set of URLs that 
are considered malicious. Now you need to figure out whether you’re 
redirecting the user to a URL in that set. 
All of these examples have the same problem. You have a very large set.
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Now you have a new item, and you want to see whether it belongs in 
that set. You could do this quickly with a hash. For example, suppose 
Google has a big hash in which the keys are all the pages it has crawled.

You want to see whether you’ve already crawled adit.io. Look it up in 
the hash.

adit.io is a key in the hash, so you’ve already crawled it. The average 
lookup time for hash tables is O(1). adit.io is in the hash, so you’ve 
already crawled it. You found that out in constant time. Pretty good!
Except that this hash needs to be huge. Google indexes trillions of web 
pages. If this hash has all the URLs that Google has indexed, it will take 
up a lot of space. Reddit and bit.ly have the same space problem. When 
you have so much data, you need to get creative!

Bloom filters
Bloom filters offer a solution. Bloom filters are probabilistic data 
structures. They give you an answer that could be wrong but is probably 
correct. Instead of a hash, you can ask your bloom filter if you’ve 
crawled this URL before. A hash table would give you an accurate 
answer. A bloom filter will give you an answer that’s probably correct:

• False positives are possible. Google might say, “You’ve already crawled 
this site,” even though you haven’t.

• False negatives aren’t possible. If the bloom filter says, “You haven’t 
crawled this site,” then you definitely haven’t crawled this site. 

Bloom filters are great because they take up very little space. A hash 
table would have to store every URL crawled by Google, but a bloom 
filter doesn’t have to do that. They’re great when you don’t need an exact 
answer, as in all of these examples. It’s okay for bit.ly to say, “We think 
this site might be malicious, so be extra careful.”
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HyperLogLog
Along the same lines is another algorithm called HyperLogLog. 
Suppose Google wants to count the number of unique searches 
performed by its users. Or suppose Amazon wants to count the number 
of unique items that users looked at today. Answering these questions 
takes a lot of space! With Google, you’d have to keep a log of all the 
unique searches. When a user searches for something, you have to see 
whether it’s already in the log. If not, you have to add it to the log. Even 
for a single day, this log would be massive! 
HyperLogLog approximates the number of unique elements in a set. 
Just like bloom filters, it won’t give you an exact answer, but it comes 
very close and uses only a fraction of the memory a task like this would 
otherwise take.
If you have a lot of data and are satisfied with approximate answers, 
check out probabilistic algorithms! 

The SHA algorithms
Do you remember hashing from chapter 5? Just to recap, suppose you 
have a key, and you want to put the associated value in an array.

You use a hash function to tell you what slot to put the value in.

And you put the value in that slot.
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This allows you to do constant-time lookups. When you want to know 
the value for a key, you can use the hash function again, and it will tell 
you in O(1) time what slot to check. 
In this case, you want the hash function to give you a good distribution. 
So a hash function takes a string and gives you back the slot number for 
that string. 

Comparing files
Another hash function is a secure hash algorithm (SHA) function. 
Given a string, SHA gives you a hash for that string.

The terminology can be a little confusing here. SHA is a hash function. 
It generates a hash, which is just a short string. The hash function for 
hash tables went from string to array index, whereas SHA goes from 
string to string. 
SHA generates a different hash for every string.

Note

SHA hashes are long. They’ve been truncated here.

You can use SHA to tell whether two files are the same. This is useful 
when you have very large files. Suppose you have a 4 GB file. You want 
to check whether your friend has the same large file. You don’t have to 
try to email them your large file. Instead, you can both calculate the 
SHA hash and compare it.
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Checking passwords
SHA is also useful when you want to compare strings without revealing 
what the original string was. For example, suppose Gmail gets hacked, 
and the attacker steals all the passwords! Is your password out in the 
open? No, it isn’t. Google doesn’t store the original password, only the 
SHA hash of the password! When you type in your password, Google 
hashes it and checks it against the hash in its database.

So it’s only comparing hashes—it doesn’t have to store your password! 
SHA is used very commonly to hash passwords like this. It’s a one-way 
hash. You can get the hash of a string.
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But you can’t get the original string from the hash.

That means if an attacker gets the SHA hashes from Gmail, they can’t 
convert those hashes back to the original passwords! You can convert a 
password to a hash, but not vice versa. 
SHA is actually a family of algorithms: SHA-0, SHA-1, SHA-2, and 
SHA-3. As of this writing, SHA-0 and SHA-1 have some weaknesses.  
If you’re using an SHA algorithm for password hashing, use SHA-2 or 
SHA-3. The gold standard for password-hashing functions is currently 
bcrypt (though nothing is foolproof). 

Locality-sensitive hashing
SHA has another important feature: it’s locality insensitive. Suppose you 
have a string, and you generate a hash for it.

If you change just one character of the string and regenerate the hash, 
it’s totally different!

This is good because an attacker can’t compare hashes to see whether 
they’re close to cracking a password. 
Sometimes, you want the opposite: you want a locality-sensitive hash 
function. That’s where Simhash comes in. If you make a small change 
to a string, Simhash generates a hash that’s only a little different. This 
allows you to compare hashes and see how similar two strings are, 
which is pretty useful! 

• Google uses Simhash to detect duplicates while crawling the web. 

• A teacher could use Simhash to see whether a student was copying an 
essay from the web.
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• Scribd allows users to upload documents or books to share with 
others. But Scribd doesn’t want users uploading copyrighted content! 
The site could use Simhash to check whether an upload is similar to a 
Harry Potter book and, if so, reject it automatically. 

Simhash is useful when you want to check for similar items.

Diffie-Hellman key exchange
The Diffie-Hellman algorithm deserves a mention here, because it solves 
an age-old problem in an elegant way. How do you encrypt a message 
so it can only be read by the person you sent the message to? 
The easiest way is to come up with a cipher, like a = 1, b = 2, and so on. 
Then if I send you the message “4,15,7”, you can translate it to “d,o,g”. 
But for this to work, we both have to agree on the cipher. We can’t agree 
over email, because someone might hack into your email, figure out 
the cipher, and decode our messages. Heck, even if we meet in person, 
someone might guess the cipher—it’s not complicated. So we should 
change it every day. But then we have to meet in person to change it 
every day! 
Even if we did manage to change it every day, a simple cipher like this 
is easy to crack with a brute-force attack. Suppose I see the message 
“9,6,13,13,16 24,16,19,13,5”. I’ll guess that this uses a = 1, b = 2, and  
so on.

That’s gibberish. Let’s try a = 2, b = 3, and so on.
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That worked! A simple cipher like this is easy to break. The Germans 
used a much more complicated cipher in WWII, but it was still cracked. 
Diffie-Hellman solves both problems: 

• Both parties don’t need to know the cipher. So we don’t have to meet 
and agree to what the cipher should be. 

• The encrypted messages are extremely hard to decode.

Diffie-Hellman has two keys: a public key and a private key. The public 
key is exactly that: public. You can post it on your website, email it 
to friends, or do anything you want with it. You don’t have to hide it. 
When someone wants to send you a message, they encrypt it using 
the public key. An encrypted message can only be decrypted using the 
private key. As long as you’re the only person with the private key, only 
you will be able to decrypt this message!
The Diffie-Hellman algorithm is still used in practice, along with its 
successor, RSA. If you’re interested in cryptography, Diffie-Hellman is a 
good place to start: it’s elegant and not too hard to follow.

Linear programming
I saved the best for last. Linear programming is one of the coolest  
things I know. 
Linear programming is used to maximize something given some 
constraints. For example, suppose your company makes two products, 
shirts and totes. Shirts need 1 meter of fabric and 5 buttons. Totes need 
2 meters of fabric and 2 buttons. You have 11 meters of fabric and 20 
buttons. You make $2 per shirt and $3 per tote. How many shirts and 
totes should you make to maximize your profit? 
Here you’re trying to maximize profit, and you’re constrained by the 
amount of materials you have.
Another example: you’re a politician, and you want to maximize the 
number of votes you get. Your research has shown that it takes an 
average of an hour of work (marketing, research, and so on) for each 
vote from a San Franciscan or 1.5 hours/vote from a Chicagoan. You 
need at least 500 San Franciscans and at least 300 Chicagoans. You have 
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50 days. It also costs you $2/San Franciscan versus $1/Chicagoan. Your 
total budget is $1,500. What’s the maximum number of total votes you 
can get (San Francisco + Chicago)?
Here you’re trying to maximize votes, and you’re constrained by time 
and money. 
You might be thinking, “You’ve talked about a lot of optimization topics 
in this book. How are they related to linear programming?” All the 
graph algorithms can be done through linear programming instead. 
Linear programming is a much more general framework, and graph 
problems are a subset of that. I hope your mind is blown! 
Linear programming uses the Simplex algorithm. It’s a complex 
algorithm, which is why I didn’t include it in this book. If you’re 
interested in optimization, look up linear programming!

Epilogue
I hope this quick tour of 10 algorithms showed you how much more is 
left to discover. I think the best way to learn is to find something you’re 
interested in and dive in. This book gave you a solid foundation to do 
just that.
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answers 
to exercises

CHAPTER 1
1.1 Suppose you have a sorted list of 128 names, and you’re searching 

through it using binary search. What’s the maximum number of 
steps it would take? 

 Answer: 7. 

1.2  Suppose you double the size of the list. What’s the maximum 
number of steps now? 

 Answer: 8.

1.3 You have a name, and you want to find the person’s phone 
number in the phone book. 

 Answer: O(log n).

1.4 You have a phone number, and you want to find the person’s 
name in the phone book. (Hint: You’ll have to search through  
the whole book!)

 Answer: O(n).

1.5 You want to read the numbers of every person in the phone book. 

 Answer: O(n).

1.6 You want to read the numbers of just the As. 

 Answer: O(n). You may think, “I’m only doing this for 1 out 
of 26 characters, so the run time should be O(n/26).” A simple 
rule to remember is, ignore numbers that are added, subtracted, 
multiplied, or divided. None of these are correct Big O run times: 
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O(n + 26), O(n - 26), O(n * 26), O(n / 26). They’re all the same as 
O(n)! Why? If you’re curious, flip to “Big O notation revisited,” in 
chapter 4, and read up on constants in Big O notation (a constant 
is just a number; 26 was the constant in this question).

CHAPTER 2
2.1 Suppose you’re building an app to keep track of your finances. 

 Every day, you write down everything you spent money on. At 
the end of the month, you review your expenses and sum up 
how much you spent. So, you have lots of inserts and a few reads. 
Should you use an array or a list? 

 Answer: In this case, you’re adding expenses to the list every day 
and reading all the expenses once a month. Arrays have fast reads 
and slow inserts. Linked lists have slow reads and fast inserts. 
Because you’ll be inserting more often than reading, it makes sense 
to use a linked list. Also, linked lists have slow reads only if you’re 
accessing random elements in the list. Because you’re reading 
every element in the list, linked lists will do well on reads too. So a 
linked list is a good solution to this problem.

2.2  Suppose you’re building an app for restaurants to take customer 
orders. Your app needs to store a list of orders. Servers keep adding 
orders to this list, and chefs take orders off the list and make them. 
It’s an order queue: servers add orders to the back of the queue, 
and the chef takes the first order off the queue and cooks it.
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 Would you use an array or a linked list to implement this queue? 
(Hint: linked lists are good for inserts/deletes, and arrays are good 
for random access. Which one are you going to be doing here?) 

 Answer: A linked list. Lots of inserts are happening (servers 
adding orders), which linked lists excel at. You don’t need search 
or random access (what arrays excel at), because the chefs always 
take the first order off the queue.

2.3  Let’s run a thought experiment. Suppose Facebook keeps a list of 
usernames. When someone tries to log in to Facebook, a search is 
done for their username. If their name is in the list of usernames, 
they can log in. People log in to Facebook pretty often, so there are 
a lot of searches through this list of usernames. Suppose Facebook 
uses binary search to search the list. Binary search needs random 
access—you need to be able to get to the middle of the list of 
usernames instantly. Knowing this, would you implement the list 
as an array or a linked list? 

 Answer: A sorted array. Arrays give you random access—you can 
get an element from the middle of the array instantly. You can’t 
do that with linked lists. To get to the middle element in a linked 
list, you’d have to start at the first element and follow all the links 
down to the middle element. 

2.4  People sign up for Facebook pretty often, too. Suppose you 
decided to use an array to store the list of users. What are the 
downsides of an array for inserts? In particular, suppose you’re 
using binary search to search for logins. What happens when you 
add new users to an array?

 Answer: Inserting into arrays is slow. Also, if you’re using binary 
search to search for usernames, the array needs to be sorted. 
Suppose someone named Adit B signs up for Facebook. Their 
name will be inserted at the end of the array. So you need to sort 
the array every time a name is inserted!

answers to exercises
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2.5 In reality, Facebook uses neither an array nor a linked list to store 
user information. Let’s consider a hybrid data structure: an array 
of linked lists. You have an array with 26 slots. Each slot points to a 
linked list. For example, the first slot in the array points to a linked 
list containing all the usernames starting with a. The second slot 
points to a linked list containing all the usernames starting with b, 
and so on.

 Suppose Adit B signs up for Facebook, and you want to add them 
to the list. You go to slot 1 in the array, go to the linked list for slot 
1, and add Adit B at the end. Now, suppose you want to search for 
Zakhir H. You go to slot 26, which points to a linked list of all the 
Z names. Then you search through that list to find Zakhir H.

  Compare this hybrid data structure to arrays and linked lists. Is it 
slower or faster than each for searching and inserting? You don’t 
have to give Big O run times, just whether the new data structure 
would be faster or slower. 

 Answer: Searching—slower than arrays, faster than linked lists. 
Inserting—faster than arrays, same amount of time as linked lists. 
So it’s slower for searching than an array, but faster or the same 
as linked lists for everything. We’ll talk about another hybrid 
data structure called a hash table later in the book. This should 
give you an idea of how you can build up more complex data 
structures from simple ones. 

 So what does Facebook really use? It probably uses a dozen 
different databases, with different data structures behind them: 
hash tables, B-trees, and others. Arrays and linked lists are the 
building blocks for these more complex data structures.

answers to exercises
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CHAPTER 3
3.1 Suppose I show you a call stack like this.

 What information can you give me, just based on this call stack? 

 Answer: Here are some things you could tell me:

• The greet function is called first, with name = maggie.

• Then the greet function calls the greet2 function, with  
name = maggie.

• At this point, the greet function is in an incomplete,  
suspended state.

• The current function call is the greet2 function.

• After this function call completes, the greet function will 
resume.

3.2 Suppose you accidentally write a recursive function that runs 
forever. As you saw, your computer allocates memory on the  
stack for each function call. What happens to the stack when  
your recursive function runs forever?

 Answer: The stack grows forever. Each program has a limited 
amount of space on the call stack. When your program runs 
out of space (which it eventually will), it will exit with a stack-
overflow error.

answers to exercises
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CHAPTER 4
4.1 Write out the code for the earlier sum function.

 Answer:

def sum(list):
  if list == []:
    return 0
  return list[0] + sum(list[1:])

4.2 Write a recursive function to count the number of items in a list.

 Answer:

def count(list):
  if list == []:
    return 0
  return 1 + count(list[1:])

4.3 Find the maximum number in a list.

 Answer:

def max(list):
  if len(list) == 2:
    return list[0] if list[0] > list[1] else list[1]
  sub_max = max(list[1:])
  return list[0] if list[0] > sub_max else sub_max

4.4 Remember binary search from chapter 1? It’s a divide-and-
conquer algorithm, too. Can you come up with the base case and 
recursive case for binary search?

 Answer: The base case for binary search is an array with one item. 
If the item you’re looking for matches the item in the array, you 
found it! Otherwise, it isn’t in the array.

 In the recursive case for binary search, you split the array in half, 
throw away one half, and call binary search on the other half.

How long would each of these operations take in Big O notation?

4.5 Printing the value of each element in an array. 

 Answer: O(n)

4.6 Doubling the value of each element in an array. 

 Answer: O(n)

4.7 Doubling the value of just the first element in an array. 

 Answer: O(1)

answers to exercises
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4.8 Creating a multiplication table with all the elements in the array. 
So if your array is [2, 3, 7, 8, 10], you first multiply every element 
by 2, then multiply every element by 3, then by 7, and so on. 

 Answer: O(n2)

CHAPTER 5
Which of these hash functions are consistent?

5.1 f(x) = 1  Returns “1” for all input

 Answer: Consistent

5.2 f(x) = rand()  Returns a random number every time

 Answer: Not consistent

5.3 f(x) = next_empty_slot()   Returns the index of the next  

empty slot in the hash table

 Answer: Not consistent

5.4 f(x) = len(x)  Uses the length of the string as the index

 Answer: Consistent

Suppose you have these four hash functions that work with strings:

A. Return “1” for all input.
B. Use the length of the string as the index.
C. Use the first character of the string as the index. So, all strings 

starting with a are hashed together, and so on.
D. Map every letter to a prime number: a = 2, b = 3, c = 5, d = 7,  

e = 11, and so on. For a string, the hash function is the sum of 
all the characters modulo the size of the hash. For example, if 
your hash size is 10, and the string is “bag”, the index is 3 + 2 + 
17 % 10 = 22 % 10 = 2.

For each of the following examples, which hash functions would 
provide a good distribution? Assume a hash table size of 10 slots.
5.5 A phonebook where the keys are names and values are phone 

numbers. The names are as follows: Esther, Ben, Bob, and Dan.

 Answer: Hash functions C and D would give a good distribution.
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5.6 A mapping from battery size to power. The sizes are A, AA, AAA, 
and AAAA.

 Answer: Hash functions B and D would give a good distribution.

5.7 A mapping from book titles to authors. The titles are Maus, Fun 
Home, and Watchmen.

 Answer: Hash functions B, C, and D would give a good 
distribution.

CHAPTER 6
Run the breadth-first search algorithm on each of these graphs  
to find the solution.  
6.1 Find the length of the shortest path from start to finish.

 Answer: The shortest path has a length of 2.

6.2 Find the length of the shortest path from “cab” to “bat”.

 Answer: The shortest path has a length of 2.
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6.3 Here’s a small graph of my morning routine.

 For these three lists, mark whether each one is valid or invalid.

 Answers: A—Invalid; B—Valid; C—Invalid.

6.4 Here’s a larger graph. Make a valid list for this graph.

 Answer: 1—Wake up; 2—Exercise; 3—Shower; 4—Brush teeth; 
5—Get dressed; 6—Pack lunch; 7—Eat breakfast.
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6.5 Which of the following graphs are also trees?

 Answers: A—Tree; B—Not a tree; C—Tree.  The last example is 
just a sideways tree. Trees are a subset of graphs. So a tree is always 
a graph, but a graph may or may not be a tree.

CHAPTER 7
7.1 In each of these graphs, what is the weight of the shortest path 

from start to finish?

 Answers: A: A—8; B—60; C—Trick question. No shortest path is 
possible (negative-weight cycle).
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CHAPTER 8
8.1 You work for a furniture company, and you have to ship furniture 

all over the country. You need to pack your truck with boxes. All 
the boxes are of different sizes, and you’re trying to maximize 
the space you use in each truck. How would you pick boxes to 
maximize space? Come up with a greedy strategy. Will that give 
you the optimal solution? 

 Answer: A greedy strategy would be to pick the largest box that 
will fit in the remaining space, and repeat until you can’t pack any 
more boxes. No, this won’t give you the optimal solution.

8.2 You’re going to Europe, and you have seven days to see everything 
you can. You assign a point value to each item (how much you 
want to see it) and estimate how long it takes. How can you 
maximize the point total (seeing all the things you really want to 
see) during your stay? Come up with a greedy strategy. Will that 
give you the optimal solution? 

 Answer: Keep picking the activity with the highest point value that 
you can still do in the time you have left. Stop when you can’t do 
anything else. No, this won’t give you the optimal solution.

For each of these algorithms, say whether it’s a greedy algorithm or not.
8.3 Quicksort

 Answer: No.

8.4 Breadth-first search

 Answer: Yes.

8.5 Dijkstra’s algorithm

 Answer: Yes.

8.6 A postman needs to deliver to 20 homes. He needs to find the 
shortest route that goes to all 20 homes. Is this an NP-complete 
problem? 

 Answer: Yes.

8.7 Finding the largest clique in a set of people (a clique is a set 
of people who all know each other). Is this an NP-complete 
problem?

 Answer: Yes.
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8.8 You’re making a map of the USA, and you need to color adjacent 
states with different colors. You have to find the minimum 
number of colors you need so that no two adjacent states are the 
same color. Is this an NP-complete problem? 

 Answer: Yes.

CHAPTER 9
9.1 Suppose you can steal another item: an MP3 player. It weighs 1 lb 

and is worth $1,000. Should you steal it? 

 Answer: Yes. Then you could steal the MP3 player, the iPhone, and 
the guitar, worth a total of $4,500.

9.2 Suppose you’re going camping. You have a knapsack that holds  
6 lb, and you can take the following items. They each have a value, 
and the higher the value, the more important the item is:

• Water, 3 lb, 10

• Book, 1 lb, 3

• Food, 2 lb, 9

• Jacket, 2 lb, 5

• Camera, 1 lb, 6
 What’s the optimal set of items to take on your camping trip? 

 Answer: You should take water, food, and a camera.

9.3 Draw and fill in the grid to calculate the longest common 
substring between blue and clues.

 Answer:
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CHAPTER 10
10.1  In the Netflix example, you calculated distance between two 

different users using the distance formula. But not all users rate 
movies the same way. Suppose you have two users, Yogi and Pinky, 
who have the same taste in movies. But Yogi rates any movie he 
likes as a 5, whereas Pinky is choosier and reserves the 5s for only 
the best. They’re well matched, but according to the distance 
algorithm, they aren’t neighbors. How would you take their 
different rating strategies into account?

 Answer: You could use something called normalization. You look 
at the average rating for each person and use it to scale their 
ratings. For example, you might notice that Pinky’s average rating 
is 3, whereas Yogi’s average rating is 3.5. So you bump up Pinky’s 
ratings a little, until her average rating is 3.5 as well. Then you can 
compare their ratings on the same scale.

10.2 Suppose Netflix nominates a group of “influencers.” For example, 
Quentin Tarantino and Wes Anderson are influencers on Netflix, 
so their ratings count for more than a normal user’s. How would 
you change the recommendations system so it’s biased toward the 
ratings of influencers? 

 Answer: You could give more weight to the ratings of the 
influencers when using KNN. Suppose you have three neighbors: 
Joe, Dave, and Wes Anderson (an influencer). They rated 
Caddyshack a 3, a 4, and a 5, respectively. Instead of just taking 
the average of their ratings (3 + 4 + 5 / 3 = 4 stars), you could give 
Wes Anderson’s rating more weight: 3 + 4 + 5 + 5 + 5 / 5 = 4.4 
stars.

10.3 Netflix has millions of users. The earlier example looked at the 
five closest neighbors for building the recommendations system. 
Is this too low? Too high? 

 Answer: It’s too low. If you look at fewer neighbors, there’s a bigger 
chance that the results will be skewed. A good rule of thumb is, if 
you have N users, you should look at sqrt(N) neighbors.
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